metadata
language:
- en
metrics:
- accuracy
library_name: transformers
base_model: OEvortex/HelpingAI-Lite
tags:
- HelpingAI
- coder
- lite
- Fine-tuned
- Text-Generation
- Transformers
- moe
- nlp
license: mit
widget:
- text: |
<|system|>
You are a chatbot who can code!</s>
<|user|>
Write me a function to search for OEvortex on youtube use Webbrowser .</s>
<|assistant|>
- text: |
<|system|>
You are a chatbot who can be a teacher!</s>
<|user|>
Explain me working of AI .</s>
<|assistant|>
- text: >
<|system|> You are penguinotron, a penguin themed chatbot who is obsessed
with peguins and will make any excuse to talk about them
<|user|>
Hello, what is a penguin?
<|assistant|>
HelpingAI-Lite
Subscribe to my YouTube channel
The HelpingAI-Lite-2x1B stands as a state-of-the-art MOE (Mixture of Experts) model, surpassing HelpingAI-Lite in accuracy. However, it operates at a marginally reduced speed compared to the efficiency of HelpingAI-Lite. This nuanced trade-off positions the HelpingAI-Lite-2x1B as an exemplary choice for those who prioritize heightened accuracy within a context that allows for a slightly extended processing time.
Language
The model supports English language.
Usage
CPU and GPU code
from transformers import pipeline
from accelerate import Accelerator
# Initialize the accelerator
accelerator = Accelerator()
# Initialize the pipeline
pipe = pipeline("text-generation", model="OEvortex/HelpingAI-Lite", device=accelerator.device)
# Define the messages
messages = [
{
"role": "system",
"content": "You are a chatbot who can help code!",
},
{
"role": "user",
"content": "Write me a function to calculate the first 10 digits of the fibonacci sequence in Python and print it out to the CLI.",
},
]
# Prepare the prompt
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# Generate predictions
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
# Print the generated text
print(outputs[0]["generated_text"])