HelpingAI-Vision

Open In Colab

Model details

The fundamental concept behind HelpingAI-Vision is to generate one token embedding per N parts of an image, as opposed to producing N visual token embeddings for the entire image. This approach, based on the HelpingAI-Lite and incorporating the LLaVA adapter, aims to enhance scene understanding by capturing more detailed information.

For every crop of the image, an embedding is generated using the full SigLIP encoder (size [1, 1152]). Subsequently, all N embeddings undergo processing through the LLaVA adapter, resulting in a token embedding of size [N, 2560]. Currently, these tokens lack explicit information about their position in the original image, with plans to incorporate positional information in a later update.

HelpingAI-Vision was fine-tuned from MC-LLaVA-3b.

The model adopts the ChatML prompt format, suggesting its potential application in chat-based scenarios. If you have specific queries or would like further details, feel free ask

<|im_start|>system
You are Vortex, a helpful AI assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

How to use

Install dependencies

!pip install -q open_clip_torch timm einops

Download modeling files

from huggingface_hub import hf_hub_download

hf_hub_download(repo_id="OEvortex/HelpingAI-Vision", filename="configuration_llava.py", local_dir="./", force_download=True)
hf_hub_download(repo_id="OEvortex/HelpingAI-Vision", filename="configuration_phi.py", local_dir="./", force_download=True)
hf_hub_download(repo_id="OEvortex/HelpingAI-Vision", filename="modeling_llava.py", local_dir="./", force_download=True)
hf_hub_download(repo_id="OEvortex/HelpingAI-Vision", filename="modeling_phi.py", local_dir="./", force_download=True)
hf_hub_download(repo_id="OEvortex/HelpingAI-Vision", filename="processing_llava.py", local_dir="./", force_download=True)

Create a model

from modeling_llava import LlavaForConditionalGeneration
import torch

model = LlavaForConditionalGeneration.from_pretrained("OEvortex/HelpingAI-Vision", torch_dtype=torch.float16)
model = model.to("cuda")

Create processors

from transformers import AutoTokenizer
from processing_llava import LlavaProcessor, OpenCLIPImageProcessor

tokenizer = AutoTokenizer.from_pretrained("OEvortex/HelpingAI-Vision")
image_processor = OpenCLIPImageProcessor(model.config.preprocess_config)
processor = LlavaProcessor(image_processor, tokenizer)

Set image and text

from PIL import Image
import requests

image_file = "https://images.unsplash.com/photo-1439246854758-f686a415d9da"
raw_image = Image.open(requests.get(image_file, stream=True).raw)

prompt = """<|im_start|>system
A chat between a curious human and an artificial intelligence assistant.
The assistant gives helpful, detailed, and polite answers to the human's questions.
The assistant does not hallucinate and pays very close attention to the details.<|im_end|>
<|im_start|>user
<image>
Describe the image.<|im_end|>
<|im_start|>assistant
"""

Process inputs

with torch.inference_mode():
  inputs = processor(prompt, raw_image, model, return_tensors='pt')

inputs['input_ids'] = inputs['input_ids'].to(model.device)
inputs['attention_mask'] = inputs['attention_mask'].to(model.device)

from transformers import TextStreamer

streamer = TextStreamer(tokenizer)

Generate the data

%%time
with torch.inference_mode():
  output = model.generate(**inputs, max_new_tokens=200, do_sample=True, top_p=0.9, temperature=1.2, eos_token_id=tokenizer.eos_token_id, streamer=streamer)
print(tokenizer.decode(output[0]).replace(prompt, "").replace("<|im_end|>", ""))
Downloads last month
44
Safetensors
Model size
3.22B params
Tensor type
BF16
Β·
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for OEvortex/HelpingAI-Vision

Finetuned
(1)
this model

Spaces using OEvortex/HelpingAI-Vision 4