Text-to-Image
PyTorch

FLUX.1 [schnell] Grid

Text-to-image diffusion models are well-known for their ability to generate realistic images based on textual prompts. However, the existing works have predominantly focused on English, lacking support for non-English text-to-image models. The most commonly used translation methods cannot solve the generation problem related to language culture, while training from scratch on a specific language dataset is prohibitively expensive. In this paper, we are inspired to propose a simple plug-and-play language transfer method based on knowledge distillation. All we need to do is train a lightweight MLP-like parameter-efficient adapter (PEA) with only 6M parameters under teacher knowledge distillation along with a small parallel data corpus. We are surprised to find that freezing the parameters of UNet can still achieve remarkable performance on the language-specific prompt evaluation set, demonstrating that PEA can stimulate the potential generation ability of the original UNet. Additionally, it closely approaches the performance of the English text-to-image model on a general prompt evaluation set. Furthermore, our adapter can be used as a plugin to achieve significant results in downstream tasks in cross-lingual text-to-image generation.

Usage

We provide examples of adapters for models such as SDXL, Playground v2.5, and stable-cascade. For SD3, please refer directly to https://huggingface.co/OPPOer/MultilingualSD3-adapter, and for FLUX. 1, please refer to https://huggingface.co/OPPOer/MultilingualFLUX.1-adapter

SDXL

We used the multilingual encoder Mul-OpenCLIP. As mentioned in the article, you can replace the model here with any SDXL derived model, including sampling acceleration, which can also be directly adapted.

import os
import torch
import torch.nn as nn

from PIL import Image
from diffusers import AutoencoderKL, StableDiffusionXLPipeline,DPMSolverMultistepScheduler
from diffusers.image_processor import VaeImageProcessor
from diffusers.models.attention_processor import (
    AttnProcessor2_0,
    LoRAAttnProcessor2_0,
    LoRAXFormersAttnProcessor,
    XFormersAttnProcessor,
)

from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import open_clip


def image_grid(imgs, rows, cols):
    assert len(imgs) == rows*cols

    w, h = imgs[0].size
    grid = Image.new('RGB', size=(cols*w, rows*h))
    grid_w, grid_h = grid.size

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i%cols*w, i//cols*h))
    return grid

class MLP(nn.Module):
    def __init__(self, in_dim, out_dim, hidden_dim,out_dim1, use_residual=True):
        super().__init__()
        if use_residual:
            assert in_dim == out_dim
        self.layernorm = nn.LayerNorm(in_dim)
        self.fc1 = nn.Linear(in_dim, hidden_dim)
        self.fc2 = nn.Linear(hidden_dim, out_dim)
        self.fc3 = nn.Linear(out_dim, out_dim1)
        self.use_residual = use_residual
        self.act_fn = nn.GELU()

    def forward(self, x):
        residual = x
        x = self.layernorm(x)
        x = self.fc1(x)
        x = self.act_fn(x)
        x = self.fc2(x)
        x2 = self.act_fn(x)
        x2 = self.fc3(x2)
        if self.use_residual:
            x = x + residual
        x1 = torch.mean(x,1)
        return x1,x2


class StableDiffusionTest():

    def __init__(self, model_id,text_text_encoder_pathpath,proj_path):
        super().__init__()
        self.text_encoder, _, preprocess = open_clip.create_model_and_transforms('xlm-roberta-large-ViT-H-14', pretrained=text_encoder_path)
        self.tokenizer = open_clip.get_tokenizer('xlm-roberta-large-ViT-H-14')
        self.text_encoder.text.output_tokens = True
        self.text_encoder = self.text_encoder.to(device,dtype=dtype)

        self.vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae").to(device)
        scheduler = DPMSolverMultistepScheduler.from_pretrained(model_id, subfolder="scheduler")
        self.pipe = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=scheduler,torch_dtype=dtype).to(device) 
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.pipe.vae_scale_factor)

        self.proj = MLP(1024, 1280, 1024,2048, use_residual=False).to(device,dtype=dtype)
        self.proj.load_state_dict(torch.load(proj_path, map_location="cpu"))


    def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
        batch_size = len(prompt) if isinstance(prompt, list) else 1

        text_input_ids = self.tokenizer(prompt).to(device)
        _,text_embeddings = self.text_encoder.encode_text(text_input_ids)

        add_text_embeds,text_embeddings_2048 = self.proj(text_embeddings)

        # duplicate text embeddings for each generation per prompt, using mps friendly method
        bs_embed, seq_len, _ = text_embeddings.shape
        text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
        text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            max_length = text_input_ids.shape[-1]

            uncond_input_ids = self.tokenizer(uncond_tokens).to(device)
            _,uncond_embeddings = self.text_encoder.encode_text(uncond_input_ids)

            add_text_embeds_uncond,uncond_embeddings_2048 = self.proj(uncond_embeddings)

            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = uncond_embeddings_2048.shape[1]
            uncond_embeddings_2048 = uncond_embeddings_2048.repeat(1, num_images_per_prompt, 1)
            uncond_embeddings_2048 = uncond_embeddings_2048.view(batch_size * num_images_per_prompt, seq_len, -1)

            text_embeddings_2048 = torch.cat([uncond_embeddings_2048, text_embeddings_2048])
            add_text_embeds = torch.cat([add_text_embeds_uncond, add_text_embeds])

        return text_embeddings_2048,add_text_embeds

    def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
        add_time_ids = list(original_size + crops_coords_top_left + target_size)
        add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
        return add_time_ids


    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]],
        height: Optional[int] = 1024, 
        width: Optional[int] = 1024, 
        num_inference_steps: int = 30,
        guidance_scale: float = 7.5,
        original_size: Optional[Tuple[int, int]] = None,
        crops_coords_top_left: Tuple[int, int] = (0, 0),
        target_size: Optional[Tuple[int, int]] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[torch.Generator] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: Optional[int] = 1,
        **kwargs,
    ):
        # 0. Default height and width to unet
        height = height or self.pipe.unet.config.sample_size * self.pipe.vae_scale_factor
        width = width or self.pipe.unet.config.sample_size * self.pipe.vae_scale_factor
        original_size = original_size or (height, width)
        target_size = target_size or (height, width)

        # 1. Check inputs. Raise error if not correct
        # self.pipe.check_inputs(prompt, height, width, callback_steps)

        # 2. Define call parameters
        batch_size = 1 if isinstance(prompt, str) else len(prompt)
        device = self.pipe._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
 
        prompt_embeds,add_text_embeds = self.encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt)
        prompt_embeds = prompt_embeds
        add_text_embeds = add_text_embeds

        # 4. Prepare timesteps
        self.pipe.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.pipe.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.pipe.unet.in_channels
        latents = self.pipe.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.pipe.prepare_extra_step_kwargs(generator, eta)

        add_time_ids = self._get_add_time_ids(original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype)
        if do_classifier_free_guidance:
            add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)

        add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
        added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}

        # 7. Denoising loop
        for i, t in enumerate(self.pipe.progress_bar(timesteps)):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
            latent_model_input = self.pipe.scheduler.scale_model_input(latent_model_input, t)

            # predict the noise residual
            noise_pred = self.pipe.unet(
                latent_model_input,
                t,
                encoder_hidden_states=prompt_embeds,
                cross_attention_kwargs=cross_attention_kwargs,
                added_cond_kwargs=added_cond_kwargs,
                return_dict=False,
            )[0]

            # noise_pred = self.pipe.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample

            # perform guidance
            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
            # latents = self.pipe.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
            latents = self.pipe.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

            # call the callback, if provided
            if callback is not None and i % callback_steps == 0:
                callback(i, t, latents)

        self.vae.to(dtype=torch.float32)

        use_torch_2_0_or_xformers = self.vae.decoder.mid_block.attentions[0].processor in [
            AttnProcessor2_0,
            XFormersAttnProcessor,
            LoRAXFormersAttnProcessor,
            LoRAAttnProcessor2_0,
        ]
        # if xformers or torch_2_0 is used attention block does not need
        # to be in float32 which can save lots of memory
        if not use_torch_2_0_or_xformers:
            self.vae.post_quant_conv.to(latents.dtype)
            self.vae.decoder.conv_in.to(latents.dtype)
            self.vae.decoder.mid_block.to(latents.dtype)
        else:
            latents = latents.float()
        
        # 8. Post-processing
        image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
        image = self.image_processor.postprocess(image, output_type="np")

        # 10. Convert to PIL
        if output_type == "pil":
            image = self.pipe.numpy_to_pil(image)

        return image


if __name__ == '__main__':
    device = "cuda"
    dtype = torch.float16

    text_encoder_path = 'laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k/open_clip_pytorch_model.bin'
    model_id = "stablediffusionapi/protovision-xl-v6.6"
    proj_path = "OPPOer/PEA-Diffusion/pytorch_model.bin"

    sdt = StableDiffusionTest(model_id,text_encoder_path,proj_path)
    
    batch=2
    height = 1024
    width = 1024      
    while True:
        raw_text = input("\nPlease Input Query (stop to exit) >>> ")
        if not raw_text:
            print('Query should not be empty!')
            continue
        if raw_text == "stop":
            break
        images = sdt([raw_text]*batch,height=height,width=width)
        grid = image_grid(images, rows=1, cols=batch)
        grid.save("SDXL.png")

Playground v2.5

We used the multilingual encoder Mul-OpenCLIP

import os,sys
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import sys
import random
from tqdm import tqdm

import torch
import torch.nn as nn
import numpy as np

import argparse
from PIL import Image
import json
from diffusers import AutoencoderKL, DiffusionPipeline
from diffusers.image_processor import VaeImageProcessor
from diffusers.models.attention_processor import (
    AttnProcessor2_0,
    LoRAAttnProcessor2_0,
    LoRAXFormersAttnProcessor,
    XFormersAttnProcessor,
)
import open_clip


def image_grid(imgs, rows, cols):
    assert len(imgs) == rows*cols

    w, h = imgs[0].size
    grid = Image.new('RGB', size=(cols*w, rows*h))
    grid_w, grid_h = grid.size

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i%cols*w, i//cols*h))
    return grid


class MLP(nn.Module):
    def __init__(self, in_dim=1024, out_dim=1280, hidden_dim=2048, out_dim1=2048, use_residual=True):
        super().__init__()
        if use_residual:
            assert in_dim == out_dim
        self.layernorm = nn.LayerNorm(in_dim)
        self.projector = nn.Sequential(
            nn.Linear(in_dim, hidden_dim, bias=False),
            nn.GELU(),
            nn.Linear(hidden_dim, hidden_dim, bias=False),
            nn.GELU(),
            nn.Linear(hidden_dim, hidden_dim, bias=False),
            nn.GELU(),
            nn.Linear(hidden_dim, out_dim, bias=False),
        )
        self.fc = nn.Linear(out_dim, out_dim1)
        self.use_residual = use_residual
    def forward(self, x):
        residual = x
        x = self.layernorm(x)
        x = self.projector(x)
        x2 = nn.GELU()(x)
        x2 = self.fc(x2)
        if self.use_residual:
            x = x + residual
        x1 = torch.mean(x,1)
        return x1,x2


class StableDiffusionTest():
    def __init__(self, model_id,text_encoder_path,proj_path):
        super().__init__()
        self.text_encoder, _, preprocess = open_clip.create_model_and_transforms('xlm-roberta-large-ViT-H-14', pretrained=text_encoder_path)
        self.tokenizer = open_clip.get_tokenizer('xlm-roberta-large-ViT-H-14')
        self.text_encoder.text.output_tokens = True
        self.text_encoder = self.text_encoder.to(device,dtype=dtype)
        self.vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae").to(device)

        self.pipe = DiffusionPipeline.from_pretrained(model_id, subfolder="scheduler", torch_dtype=dtype, variant="fp16").to(device)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.pipe.vae_scale_factor)

        self.proj = MLP(1024, 1280, 2048, 2048, use_residual=False).to(device,dtype=dtype)
        self.proj.load_state_dict(torch.load(proj_path, map_location="cpu"))

    def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
        batch_size = len(prompt) if isinstance(prompt, list) else 1
        text_input_ids = self.tokenizer(prompt).to(device)
        _,text_embeddings = self.text_encoder.encode_text(text_input_ids)
        add_text_embeds,text_embeddings_2048 = self.proj(text_embeddings)

        bs_embed, seq_len, _ = text_embeddings.shape
        text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
        text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)

        if do_classifier_free_guidance:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            max_length = text_input_ids.shape[-1]
            uncond_input_ids = self.tokenizer(uncond_tokens).to(device)
            _,uncond_embeddings = self.text_encoder.encode_text(uncond_input_ids)
            add_text_embeds_uncond,uncond_embeddings_2048 = self.proj(uncond_embeddings)

            seq_len = uncond_embeddings_2048.shape[1]
            uncond_embeddings_2048 = uncond_embeddings_2048.repeat(1, num_images_per_prompt, 1)
            uncond_embeddings_2048 = uncond_embeddings_2048.view(batch_size * num_images_per_prompt, seq_len, -1)

            text_embeddings_2048 = torch.cat([uncond_embeddings_2048, text_embeddings_2048])
            add_text_embeds = torch.cat([add_text_embeds_uncond, add_text_embeds])

        return text_embeddings_2048,add_text_embeds

    def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
        add_time_ids = list(original_size + crops_coords_top_left + target_size)
        add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
        return add_time_ids


    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]],
        height: Optional[int] = 1024,
        width: Optional[int] = 1024,
        num_inference_steps: int = 50,
        guidance_scale: float = 3,
        original_size: Optional[Tuple[int, int]] = None,
        crops_coords_top_left: Tuple[int, int] = (0, 0),
        target_size: Optional[Tuple[int, int]] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[torch.Generator] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: Optional[int] = 1,
        **kwargs,
    ):
        height = height or self.pipe.unet.config.sample_size * self.pipe.vae_scale_factor
        width = width or self.pipe.unet.config.sample_size * self.pipe.vae_scale_factor
        original_size = original_size or (height, width)
        target_size = target_size or (height, width)

        batch_size = 1 if isinstance(prompt, str) else len(prompt)
        device = self.pipe._execution_device

        do_classifier_free_guidance = guidance_scale > 1.0
 
        prompt_embeds,add_text_embeds = self.encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt)

        self.pipe.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.pipe.scheduler.timesteps
        num_channels_latents = self.pipe.unet.in_channels
        latents = self.pipe.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        extra_step_kwargs = self.pipe.prepare_extra_step_kwargs(generator, eta)

        add_time_ids = self._get_add_time_ids(original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype)
        if do_classifier_free_guidance:
            add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)

        add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
        added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}

        for i, t in enumerate(self.pipe.progress_bar(timesteps)):
            latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
            latent_model_input = self.pipe.scheduler.scale_model_input(latent_model_input, t)

            noise_pred = self.pipe.unet(
                latent_model_input,
                t,
                encoder_hidden_states=prompt_embeds,
                cross_attention_kwargs=cross_attention_kwargs,
                added_cond_kwargs=added_cond_kwargs,
                return_dict=False,
            )[0]

            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            latents = self.pipe.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

            if callback is not None and i % callback_steps == 0:
                callback(i, t, latents)

        self.vae.to(dtype=torch.float32)

        use_torch_2_0_or_xformers = self.vae.decoder.mid_block.attentions[0].processor in [
            AttnProcessor2_0,
            XFormersAttnProcessor,
            LoRAXFormersAttnProcessor,
            LoRAAttnProcessor2_0,
        ]

        if not use_torch_2_0_or_xformers:
            self.vae.post_quant_conv.to(latents.dtype)
            self.vae.decoder.conv_in.to(latents.dtype)
            self.vae.decoder.mid_block.to(latents.dtype)
        else:
            latents = latents.float()
        
        has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
        has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
        if has_latents_mean and has_latents_std:
            latents_mean = (
                torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
            )
            latents_std = (
                torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
            )
            latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
        else:
            latents = latents / self.vae.config.scaling_factor
            
        image = self.vae.decode(latents, return_dict=False)[0]
        image = self.image_processor.postprocess(image, output_type="np")

        if output_type == "pil":
            image = self.pipe.numpy_to_pil(image)

        return image


if __name__ == '__main__':
    device = "cuda"
    dtype = torch.float16

    model_id = "playgroundai/playground-v2.5-1024px-aesthetic"
    text_encoder_path = 'laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k/open_clip_pytorch_model.bin'
    proj_path = "OPPOer/PEA-Diffusion/pytorch_model_pg.bin"

    sdt = StableDiffusionTest(model_id,text_encoder_path,proj_path)
    
    batch=2
    height = 1024
    width = 1024

    while True:
        raw_text = input("\nPlease Input Query (stop to exit) >>> ")
        if not raw_text:
            print('Query should not be empty!')
            continue
        if raw_text == "stop":
            break
        images = sdt([raw_text]*batch,height=height,width=width)
        grid = image_grid(images, rows=1, cols=batch)
        grid.save("PG.png")

To learn more check out the diffusers documentation

stable-cascade

comig soon

License

The adapter itself is Apache License 2.0, but it must follow the license of the main model.

Citation

@misc{ma2023peadiffusion,
      title={PEA-Diffusion: Parameter-Efficient Adapter with Knowledge Distillation in non-English Text-to-Image Generation}, 
      author={Jian Ma and Chen Chen and Qingsong Xie and Haonan Lu},
      year={2023},
      eprint={2311.17086},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for OPPOer/PEA-Diffusion

Finetuned
(1062)
this model