File size: 27,022 Bytes
015a181 3cb067a 015a181 3cb067a 015a181 3cb067a 015a181 8d1ea83 015a181 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 |
---
license: apache-2.0
language:
- zh
- en
- fr
- de
- ja
- kg
base_model:
- stabilityai/stable-diffusion-xl-base-1.0
pipeline_tag: text-to-image
---
![FLUX.1 [schnell] Grid](./PEA-Diffusion.png)
Text-to-image diffusion models are well-known for their ability to generate realistic images based on textual prompts. However, the existing works have predominantly focused on English, lacking support for non-English text-to-image models. The most commonly used translation methods cannot solve the generation problem related to language culture, while training from scratch on a specific language dataset is prohibitively expensive. In this paper, we are inspired to propose a simple plug-and-play language transfer method based on knowledge distillation. All we need to do is train a lightweight MLP-like parameter-efficient adapter (PEA) with only 6M parameters under teacher knowledge distillation along with a small parallel data corpus. We are surprised to find that freezing the parameters of UNet can still achieve remarkable performance on the language-specific prompt evaluation set, demonstrating that PEA can stimulate the potential generation ability of the original UNet. Additionally, it closely approaches the performance of the English text-to-image model on a general prompt evaluation set. Furthermore, our adapter can be used as a plugin to achieve significant results in downstream tasks in cross-lingual text-to-image generation.
# Usage
We provide examples of adapters for models such as [SDXL](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0), [Playground v2.5](https://huggingface.co/playgroundai/playground-v2.5-1024px-aesthetic), and [stable-cascade](https://huggingface.co/stabilityai/stable-cascade). For SD3, please refer directly to https://huggingface.co/OPPOer/MultilingualSD3-adapter, and for FLUX. 1, please refer to https://huggingface.co/OPPOer/MultilingualFLUX.1-adapter
## `SDXL`
We used the multilingual encoder [Mul-OpenCLIP](https://huggingface.co/laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k).
As mentioned in the article, you can replace the model here with any SDXL derived model, including sampling acceleration, which can also be directly adapted.
```python
import os
import torch
import torch.nn as nn
from PIL import Image
from diffusers import AutoencoderKL, StableDiffusionXLPipeline,DPMSolverMultistepScheduler
from diffusers.image_processor import VaeImageProcessor
from diffusers.models.attention_processor import (
AttnProcessor2_0,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import open_clip
def image_grid(imgs, rows, cols):
assert len(imgs) == rows*cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i%cols*w, i//cols*h))
return grid
class MLP(nn.Module):
def __init__(self, in_dim, out_dim, hidden_dim,out_dim1, use_residual=True):
super().__init__()
if use_residual:
assert in_dim == out_dim
self.layernorm = nn.LayerNorm(in_dim)
self.fc1 = nn.Linear(in_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, out_dim)
self.fc3 = nn.Linear(out_dim, out_dim1)
self.use_residual = use_residual
self.act_fn = nn.GELU()
def forward(self, x):
residual = x
x = self.layernorm(x)
x = self.fc1(x)
x = self.act_fn(x)
x = self.fc2(x)
x2 = self.act_fn(x)
x2 = self.fc3(x2)
if self.use_residual:
x = x + residual
x1 = torch.mean(x,1)
return x1,x2
class StableDiffusionTest():
def __init__(self, model_id,text_text_encoder_pathpath,proj_path):
super().__init__()
self.text_encoder, _, preprocess = open_clip.create_model_and_transforms('xlm-roberta-large-ViT-H-14', pretrained=text_encoder_path)
self.tokenizer = open_clip.get_tokenizer('xlm-roberta-large-ViT-H-14')
self.text_encoder.text.output_tokens = True
self.text_encoder = self.text_encoder.to(device,dtype=dtype)
self.vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae").to(device)
scheduler = DPMSolverMultistepScheduler.from_pretrained(model_id, subfolder="scheduler")
self.pipe = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=scheduler,torch_dtype=dtype).to(device)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.pipe.vae_scale_factor)
self.proj = MLP(1024, 1280, 1024,2048, use_residual=False).to(device,dtype=dtype)
self.proj.load_state_dict(torch.load(proj_path, map_location="cpu"))
def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
batch_size = len(prompt) if isinstance(prompt, list) else 1
text_input_ids = self.tokenizer(prompt).to(device)
_,text_embeddings = self.text_encoder.encode_text(text_input_ids)
add_text_embeds,text_embeddings_2048 = self.proj(text_embeddings)
# duplicate text embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = text_embeddings.shape
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = text_input_ids.shape[-1]
uncond_input_ids = self.tokenizer(uncond_tokens).to(device)
_,uncond_embeddings = self.text_encoder.encode_text(uncond_input_ids)
add_text_embeds_uncond,uncond_embeddings_2048 = self.proj(uncond_embeddings)
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings_2048.shape[1]
uncond_embeddings_2048 = uncond_embeddings_2048.repeat(1, num_images_per_prompt, 1)
uncond_embeddings_2048 = uncond_embeddings_2048.view(batch_size * num_images_per_prompt, seq_len, -1)
text_embeddings_2048 = torch.cat([uncond_embeddings_2048, text_embeddings_2048])
add_text_embeds = torch.cat([add_text_embeds_uncond, add_text_embeds])
return text_embeddings_2048,add_text_embeds
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
add_time_ids = list(original_size + crops_coords_top_left + target_size)
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
return add_time_ids
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
height: Optional[int] = 1024,
width: Optional[int] = 1024,
num_inference_steps: int = 30,
guidance_scale: float = 7.5,
original_size: Optional[Tuple[int, int]] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Optional[Tuple[int, int]] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
**kwargs,
):
# 0. Default height and width to unet
height = height or self.pipe.unet.config.sample_size * self.pipe.vae_scale_factor
width = width or self.pipe.unet.config.sample_size * self.pipe.vae_scale_factor
original_size = original_size or (height, width)
target_size = target_size or (height, width)
# 1. Check inputs. Raise error if not correct
# self.pipe.check_inputs(prompt, height, width, callback_steps)
# 2. Define call parameters
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self.pipe._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
prompt_embeds,add_text_embeds = self.encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt)
prompt_embeds = prompt_embeds
add_text_embeds = add_text_embeds
# 4. Prepare timesteps
self.pipe.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.pipe.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.pipe.unet.in_channels
latents = self.pipe.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.pipe.prepare_extra_step_kwargs(generator, eta)
add_time_ids = self._get_add_time_ids(original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype)
if do_classifier_free_guidance:
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
# 7. Denoising loop
for i, t in enumerate(self.pipe.progress_bar(timesteps)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.pipe.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.pipe.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# noise_pred = self.pipe.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
# latents = self.pipe.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
latents = self.pipe.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = self.vae.decoder.mid_block.attentions[0].processor in [
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
]
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if not use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(latents.dtype)
self.vae.decoder.conv_in.to(latents.dtype)
self.vae.decoder.mid_block.to(latents.dtype)
else:
latents = latents.float()
# 8. Post-processing
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type="np")
# 10. Convert to PIL
if output_type == "pil":
image = self.pipe.numpy_to_pil(image)
return image
if __name__ == '__main__':
device = "cuda"
dtype = torch.float16
text_encoder_path = 'laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k/open_clip_pytorch_model.bin'
model_id = "stablediffusionapi/protovision-xl-v6.6"
proj_path = "OPPOer/PEA-Diffusion/pytorch_model.bin"
sdt = StableDiffusionTest(model_id,text_encoder_path,proj_path)
batch=2
height = 1024
width = 1024
while True:
raw_text = input("\nPlease Input Query (stop to exit) >>> ")
if not raw_text:
print('Query should not be empty!')
continue
if raw_text == "stop":
break
images = sdt([raw_text]*batch,height=height,width=width)
grid = image_grid(images, rows=1, cols=batch)
grid.save("SDXL.png")
```
## `Playground v2.5`
We used the multilingual encoder [Mul-OpenCLIP](https://huggingface.co/laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k)
```python
import os,sys
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import sys
import random
from tqdm import tqdm
import torch
import torch.nn as nn
import numpy as np
import argparse
from PIL import Image
import json
from diffusers import AutoencoderKL, DiffusionPipeline
from diffusers.image_processor import VaeImageProcessor
from diffusers.models.attention_processor import (
AttnProcessor2_0,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
import open_clip
def image_grid(imgs, rows, cols):
assert len(imgs) == rows*cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i%cols*w, i//cols*h))
return grid
class MLP(nn.Module):
def __init__(self, in_dim=1024, out_dim=1280, hidden_dim=2048, out_dim1=2048, use_residual=True):
super().__init__()
if use_residual:
assert in_dim == out_dim
self.layernorm = nn.LayerNorm(in_dim)
self.projector = nn.Sequential(
nn.Linear(in_dim, hidden_dim, bias=False),
nn.GELU(),
nn.Linear(hidden_dim, hidden_dim, bias=False),
nn.GELU(),
nn.Linear(hidden_dim, hidden_dim, bias=False),
nn.GELU(),
nn.Linear(hidden_dim, out_dim, bias=False),
)
self.fc = nn.Linear(out_dim, out_dim1)
self.use_residual = use_residual
def forward(self, x):
residual = x
x = self.layernorm(x)
x = self.projector(x)
x2 = nn.GELU()(x)
x2 = self.fc(x2)
if self.use_residual:
x = x + residual
x1 = torch.mean(x,1)
return x1,x2
class StableDiffusionTest():
def __init__(self, model_id,text_encoder_path,proj_path):
super().__init__()
self.text_encoder, _, preprocess = open_clip.create_model_and_transforms('xlm-roberta-large-ViT-H-14', pretrained=text_encoder_path)
self.tokenizer = open_clip.get_tokenizer('xlm-roberta-large-ViT-H-14')
self.text_encoder.text.output_tokens = True
self.text_encoder = self.text_encoder.to(device,dtype=dtype)
self.vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae").to(device)
self.pipe = DiffusionPipeline.from_pretrained(model_id, subfolder="scheduler", torch_dtype=dtype, variant="fp16").to(device)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.pipe.vae_scale_factor)
self.proj = MLP(1024, 1280, 2048, 2048, use_residual=False).to(device,dtype=dtype)
self.proj.load_state_dict(torch.load(proj_path, map_location="cpu"))
def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
batch_size = len(prompt) if isinstance(prompt, list) else 1
text_input_ids = self.tokenizer(prompt).to(device)
_,text_embeddings = self.text_encoder.encode_text(text_input_ids)
add_text_embeds,text_embeddings_2048 = self.proj(text_embeddings)
bs_embed, seq_len, _ = text_embeddings.shape
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = text_input_ids.shape[-1]
uncond_input_ids = self.tokenizer(uncond_tokens).to(device)
_,uncond_embeddings = self.text_encoder.encode_text(uncond_input_ids)
add_text_embeds_uncond,uncond_embeddings_2048 = self.proj(uncond_embeddings)
seq_len = uncond_embeddings_2048.shape[1]
uncond_embeddings_2048 = uncond_embeddings_2048.repeat(1, num_images_per_prompt, 1)
uncond_embeddings_2048 = uncond_embeddings_2048.view(batch_size * num_images_per_prompt, seq_len, -1)
text_embeddings_2048 = torch.cat([uncond_embeddings_2048, text_embeddings_2048])
add_text_embeds = torch.cat([add_text_embeds_uncond, add_text_embeds])
return text_embeddings_2048,add_text_embeds
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
add_time_ids = list(original_size + crops_coords_top_left + target_size)
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
return add_time_ids
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
height: Optional[int] = 1024,
width: Optional[int] = 1024,
num_inference_steps: int = 50,
guidance_scale: float = 3,
original_size: Optional[Tuple[int, int]] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Optional[Tuple[int, int]] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
**kwargs,
):
height = height or self.pipe.unet.config.sample_size * self.pipe.vae_scale_factor
width = width or self.pipe.unet.config.sample_size * self.pipe.vae_scale_factor
original_size = original_size or (height, width)
target_size = target_size or (height, width)
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self.pipe._execution_device
do_classifier_free_guidance = guidance_scale > 1.0
prompt_embeds,add_text_embeds = self.encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt)
self.pipe.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.pipe.scheduler.timesteps
num_channels_latents = self.pipe.unet.in_channels
latents = self.pipe.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
extra_step_kwargs = self.pipe.prepare_extra_step_kwargs(generator, eta)
add_time_ids = self._get_add_time_ids(original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype)
if do_classifier_free_guidance:
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
for i, t in enumerate(self.pipe.progress_bar(timesteps)):
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.pipe.scheduler.scale_model_input(latent_model_input, t)
noise_pred = self.pipe.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = self.pipe.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = self.vae.decoder.mid_block.attentions[0].processor in [
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
]
if not use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(latents.dtype)
self.vae.decoder.conv_in.to(latents.dtype)
self.vae.decoder.mid_block.to(latents.dtype)
else:
latents = latents.float()
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
if has_latents_mean and has_latents_std:
latents_mean = (
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
)
latents_std = (
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
)
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
else:
latents = latents / self.vae.config.scaling_factor
image = self.vae.decode(latents, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type="np")
if output_type == "pil":
image = self.pipe.numpy_to_pil(image)
return image
if __name__ == '__main__':
device = "cuda"
dtype = torch.float16
model_id = "playgroundai/playground-v2.5-1024px-aesthetic"
text_encoder_path = 'laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k/open_clip_pytorch_model.bin'
proj_path = "OPPOer/PEA-Diffusion/pytorch_model_pg.bin"
sdt = StableDiffusionTest(model_id,text_encoder_path,proj_path)
batch=2
height = 1024
width = 1024
while True:
raw_text = input("\nPlease Input Query (stop to exit) >>> ")
if not raw_text:
print('Query should not be empty!')
continue
if raw_text == "stop":
break
images = sdt([raw_text]*batch,height=height,width=width)
grid = image_grid(images, rows=1, cols=batch)
grid.save("PG.png")
```
To learn more check out the [diffusers](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux) documentation
## `stable-cascade`
comig soon
# License
The adapter itself is Apache License 2.0, but it must follow the license of the main model.
# Citation
```
@misc{ma2023peadiffusion,
title={PEA-Diffusion: Parameter-Efficient Adapter with Knowledge Distillation in non-English Text-to-Image Generation},
author={Jian Ma and Chen Chen and Qingsong Xie and Haonan Lu},
year={2023},
eprint={2311.17086},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
``` |