Model Card for Model ID

License: CC BY-NC-SA 4.0

Model description

odiagenAI-model-v0 is based on Llama-7b and finetuned with 52k Odia translated data from the open-source Stanford-Alpaca, resulting in good Odia instruction understanding and response generation capabilities.

The code of Odia data generation and other detailed information can be found in our Github project repository: https://github.com/shantipriyap/OdiaGenAI. This repo contains a low-rank adapter for LLaMA-7b fit on the Stanford Alpaca dataset.

Training hyper-parameters

Parameter Value
Batch size 128
Learning rate 3e-4
Epochs 2
Cutoff length 256
Weight_decay 0.001
Warmup_rate 0.1
LR_scheduler linear
Lora r 16
Lora target modules (q_proj, k_proj, v_proj, o_proj)

Model can be easily loaded with AutoModelForCausalLM.


import torch
from peft import PeftModel
import transformers

assert (
    "LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig

tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")

BASE_MODEL = "decapoda-research/llama-7b-hf"
LORA_WEIGHTS = "OdiaGenAI/odiagenAI-model-v0"


model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL,
        load_in_8bit=False,
        torch_dtype=torch.float16,
        device_map="auto",
    )
model = PeftModel.from_pretrained(
        model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True
    )

def generate_prompt(instruction, input=None):
    if input:
        return f"""ନିମ୍ନରେ ଏକ ନିର୍ଦ୍ଦେଶନାମା ଯାହାକି ଏକ କାର୍ଯ୍ୟକୁ ବର୍ଣ୍ଣନା କରେ, ଏକ ଇନପୁଟ୍ ସହିତ ଯୋଡି ଯାହା ପରବର୍ତ୍ତୀ ପ୍ରସଙ୍ଗ ପ୍ରଦାନ କରେ | ଏକ ପ୍ରତିକ୍ରିୟା ଲେଖନ୍ତୁ ଯାହା ଅନୁରୋଧକୁ ସଠିକ୍ ଭାବରେ ସମାପ୍ତ କରେ |
### ନିର୍ଦ୍ଦେଶ:
{instruction}
### ଇନପୁଟ୍:
{input}
### ପ୍ରତିକ୍ରିୟା:"""
    else:
        return f"""ନିମ୍ନରେ ଏକ ନିର୍ଦ୍ଦେଶ ଯାହାକି ଏକ କାର୍ଯ୍ୟକୁ ବର୍ଣ୍ଣନା କରେ | ଏକ ପ୍ରତିକ୍ରିୟା ଲେଖନ୍ତୁ ଯାହା ଅନୁରୋଧକୁ ସଠିକ୍ ଭାବରେ ସମାପ୍ତ କରେ |
### ନିର୍ଦ୍ଦେଶ:
{instruction}
### ପ୍ରତିକ୍ରିୟା:"""

prompt = generate_prompt(instruction, input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
    temperature=0.1,
    top_p=0.75,
    top_k=40,
    num_beams=4,
    **kwargs,
)
with torch.no_grad():
    generation_output = model.generate(
        input_ids=input_ids,
        generation_config=generation_config,
        return_dict_in_generate=True,
        output_scores=True,
        max_new_tokens=128,
    )
s = generation_output.sequences[0]
output = tokenizer.decode(s)
print(output.split("### Response:")[1].strip())

Instructions for running it can be found at https://github.com/shantipriyap/OdiaGenAI.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Space using OdiaGenAI/odiagenAI-model-v0 1