ner-DarijaBERT-arabizi

This model is a fine-tuned version of SI2M-Lab/DarijaBERT-arabizi on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1011
  • Precision: 0.7475
  • Recall: 0.7753
  • F1: 0.7611
  • Accuracy: 0.9681

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 32 0.3240 0.5397 0.3251 0.4058 0.8996
No log 2.0 64 0.2541 0.5593 0.4720 0.5120 0.9203
No log 3.0 96 0.2062 0.5697 0.5828 0.5762 0.9350
No log 4.0 128 0.1791 0.6162 0.6313 0.6236 0.9426
No log 5.0 160 0.1528 0.6504 0.6803 0.6650 0.9509
No log 6.0 192 0.1308 0.6880 0.7262 0.7066 0.9582
No log 7.0 224 0.1189 0.7126 0.7270 0.7198 0.9612
No log 8.0 256 0.1100 0.7307 0.7661 0.7480 0.9651
No log 9.0 288 0.1037 0.7423 0.7567 0.7494 0.9667
No log 10.0 320 0.1011 0.7475 0.7753 0.7611 0.9681

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
27
Safetensors
Model size
170M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Oelbourki/ner-DarijaBERT-arabizi

Finetuned
(1)
this model