Oelbourki commited on
Commit
d3ccb9d
1 Parent(s): 5dd4ba9

End of training

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: SI2M-Lab/DarijaBERT-arabizi
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: ner-DarijaBERT-arabizi
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # ner-DarijaBERT-arabizi
19
+
20
+ This model is a fine-tuned version of [SI2M-Lab/DarijaBERT-arabizi](https://huggingface.co/SI2M-Lab/DarijaBERT-arabizi) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.1011
23
+ - Precision: 0.7475
24
+ - Recall: 0.7753
25
+ - F1: 0.7611
26
+ - Accuracy: 0.9681
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 64
47
+ - eval_batch_size: 64
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 10
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 1.0 | 32 | 0.3240 | 0.5397 | 0.3251 | 0.4058 | 0.8996 |
58
+ | No log | 2.0 | 64 | 0.2541 | 0.5593 | 0.4720 | 0.5120 | 0.9203 |
59
+ | No log | 3.0 | 96 | 0.2062 | 0.5697 | 0.5828 | 0.5762 | 0.9350 |
60
+ | No log | 4.0 | 128 | 0.1791 | 0.6162 | 0.6313 | 0.6236 | 0.9426 |
61
+ | No log | 5.0 | 160 | 0.1528 | 0.6504 | 0.6803 | 0.6650 | 0.9509 |
62
+ | No log | 6.0 | 192 | 0.1308 | 0.6880 | 0.7262 | 0.7066 | 0.9582 |
63
+ | No log | 7.0 | 224 | 0.1189 | 0.7126 | 0.7270 | 0.7198 | 0.9612 |
64
+ | No log | 8.0 | 256 | 0.1100 | 0.7307 | 0.7661 | 0.7480 | 0.9651 |
65
+ | No log | 9.0 | 288 | 0.1037 | 0.7423 | 0.7567 | 0.7494 | 0.9667 |
66
+ | No log | 10.0 | 320 | 0.1011 | 0.7475 | 0.7753 | 0.7611 | 0.9681 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.36.2
72
+ - Pytorch 2.1.2+cu121
73
+ - Datasets 2.15.0
74
+ - Tokenizers 0.15.0