End of training
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: SI2M-Lab/DarijaBERT-arabizi
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: ner-DarijaBERT-arabizi
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# ner-DarijaBERT-arabizi
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [SI2M-Lab/DarijaBERT-arabizi](https://huggingface.co/SI2M-Lab/DarijaBERT-arabizi) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.1011
|
23 |
+
- Precision: 0.7475
|
24 |
+
- Recall: 0.7753
|
25 |
+
- F1: 0.7611
|
26 |
+
- Accuracy: 0.9681
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 64
|
47 |
+
- eval_batch_size: 64
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 10
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 32 | 0.3240 | 0.5397 | 0.3251 | 0.4058 | 0.8996 |
|
58 |
+
| No log | 2.0 | 64 | 0.2541 | 0.5593 | 0.4720 | 0.5120 | 0.9203 |
|
59 |
+
| No log | 3.0 | 96 | 0.2062 | 0.5697 | 0.5828 | 0.5762 | 0.9350 |
|
60 |
+
| No log | 4.0 | 128 | 0.1791 | 0.6162 | 0.6313 | 0.6236 | 0.9426 |
|
61 |
+
| No log | 5.0 | 160 | 0.1528 | 0.6504 | 0.6803 | 0.6650 | 0.9509 |
|
62 |
+
| No log | 6.0 | 192 | 0.1308 | 0.6880 | 0.7262 | 0.7066 | 0.9582 |
|
63 |
+
| No log | 7.0 | 224 | 0.1189 | 0.7126 | 0.7270 | 0.7198 | 0.9612 |
|
64 |
+
| No log | 8.0 | 256 | 0.1100 | 0.7307 | 0.7661 | 0.7480 | 0.9651 |
|
65 |
+
| No log | 9.0 | 288 | 0.1037 | 0.7423 | 0.7567 | 0.7494 | 0.9667 |
|
66 |
+
| No log | 10.0 | 320 | 0.1011 | 0.7475 | 0.7753 | 0.7611 | 0.9681 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.36.2
|
72 |
+
- Pytorch 2.1.2+cu121
|
73 |
+
- Datasets 2.15.0
|
74 |
+
- Tokenizers 0.15.0
|