|
--- |
|
language: "en" |
|
thumbnail: "Keywords to Sentences" |
|
tags: |
|
- keytotext |
|
- k2t |
|
- Keywords to Sentences |
|
license: "MIT" |
|
datasets: |
|
- WebNLG |
|
- Dart |
|
metrics: |
|
- NLG |
|
|
|
model-index: |
|
- name: logisgenerator |
|
--- |
|
|
|
#keytotext |
|
|
|
[![pypi Version](https://img.shields.io/pypi/v/keytotext.svg?logo=pypi&logoColor=white)](https://pypi.org/project/keytotext/) |
|
[![Downloads](https://static.pepy.tech/personalized-badge/keytotext?period=total&units=none&left_color=grey&right_color=orange&left_text=Pip%20Downloads)](https://pepy.tech/project/keytotext) |
|
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/notebooks/K2T.ipynb) |
|
[![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) |
|
[![API Call](https://img.shields.io/badge/-FastAPI-red?logo=fastapi&labelColor=white)](https://github.com/gagan3012/keytotext#api) |
|
[![Docker Call](https://img.shields.io/badge/-Docker%20Image-blue?logo=docker&labelColor=white)](https://hub.docker.com/r/gagan30/keytotext) |
|
[![HuggingFace](https://img.shields.io/badge/%F0%9F%A4%97-Models%20on%20Hub-yellow)](https://huggingface.co/models?filter=keytotext) |
|
[![Documentation Status](https://readthedocs.org/projects/keytotext/badge/?version=latest)](https://keytotext.readthedocs.io/en/latest/?badge=latest) |
|
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) |
|
|
|
|
|
|
|
![keytotext](https://socialify.git.ci/gagan3012/keytotext/image?description=1&forks=1&language=1&owner=1&stargazers=1&theme=Light) |
|
|
|
|
|
Idea is to build a model which will take keywords as inputs and generate sentences as outputs. |
|
|
|
Potential use case can include: |
|
- Marketing |
|
- Search Engine Optimization |
|
- Topic generation etc. |
|
- Fine tuning of topic modeling models |