|
import numpy as np |
|
import cv2 |
|
import os |
|
import math |
|
|
|
import torch |
|
from torch import nn |
|
|
|
import torch.nn.functional as F |
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ |
|
|
|
import torch.utils.checkpoint as checkpoint |
|
from functools import partial |
|
from einops import rearrange |
|
|
|
try: |
|
from flash_attn.modules.mlp import FusedMLP |
|
except: |
|
print(f'FusedMLP of flash_attn is not installed!!!') |
|
|
|
try: |
|
from flash_attn.ops.rms_norm import DropoutAddRMSNorm |
|
except: |
|
print(f'DropoutAddRMSNorm of flash_attn is not installed!!!') |
|
|
|
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func |
|
from flash_attn.bert_padding import unpad_input, pad_input |
|
|
|
|
|
class FlashAttention(nn.Module): |
|
"""Implement the scaled dot product attention with softmax. |
|
Arguments |
|
--------- |
|
softmax_scale: The temperature to use for the softmax attention. |
|
(default: 1/sqrt(d_keys) where d_keys is computed at |
|
runtime) |
|
attention_dropout: The dropout rate to apply to the attention |
|
(default: 0.0) |
|
""" |
|
|
|
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None): |
|
super().__init__() |
|
self.softmax_scale = softmax_scale |
|
self.dropout_p = attention_dropout |
|
|
|
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None, |
|
max_s=None, need_weights=False): |
|
"""Implements the multihead softmax attention. |
|
Arguments |
|
--------- |
|
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None |
|
if unpadded: (nnz, 3, h, d) |
|
key_padding_mask: a bool tensor of shape (B, S) |
|
""" |
|
assert not need_weights |
|
assert qkv.dtype in [torch.float16, torch.bfloat16] |
|
assert qkv.is_cuda |
|
|
|
if cu_seqlens is None: |
|
batch_size = qkv.shape[0] |
|
seqlen = qkv.shape[1] |
|
if key_padding_mask is None: |
|
qkv = rearrange(qkv, 'b s ... -> (b s) ...') |
|
max_s = seqlen |
|
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, |
|
device=qkv.device) |
|
output = flash_attn_varlen_qkvpacked_func( |
|
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, |
|
softmax_scale=self.softmax_scale, causal=causal |
|
) |
|
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size) |
|
else: |
|
nheads = qkv.shape[-2] |
|
x = rearrange(qkv, 'b s three h d -> b s (three h d)') |
|
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask) |
|
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads) |
|
output_unpad = flash_attn_varlen_qkvpacked_func( |
|
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, |
|
softmax_scale=self.softmax_scale, causal=causal |
|
) |
|
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), |
|
indices, batch_size, seqlen), |
|
'b s (h d) -> b s h d', h=nheads) |
|
else: |
|
assert max_s is not None |
|
output = flash_attn_varlen_qkvpacked_func( |
|
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, |
|
softmax_scale=self.softmax_scale, causal=causal |
|
) |
|
|
|
return output, None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): |
|
""" |
|
grid_size: int of the grid height and width |
|
return: |
|
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) |
|
""" |
|
grid_h = np.arange(grid_size, dtype=np.float32) |
|
grid_w = np.arange(grid_size, dtype=np.float32) |
|
grid = np.meshgrid(grid_w, grid_h) |
|
grid = np.stack(grid, axis=0) |
|
|
|
grid = grid.reshape([2, 1, grid_size, grid_size]) |
|
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) |
|
if cls_token: |
|
pos_embed = np.concatenate( |
|
[np.zeros([1, embed_dim]), pos_embed], axis=0 |
|
) |
|
return pos_embed |
|
|
|
|
|
def get_1d_sincos_pos_embed(embed_dim, t_size, cls_token=False): |
|
""" |
|
t_size: int of the temporal size |
|
return: |
|
pos_embed: [t_size, embed_dim] or [1+t_size, embed_dim] (w/ or w/o cls_token) |
|
""" |
|
grid_t = np.arange(t_size, dtype=np.float32) |
|
pos_embed = get_1d_sincos_pos_embed_from_grid(embed_dim, grid_t) |
|
if cls_token: |
|
pos_embed = np.concatenate( |
|
[np.zeros([1, embed_dim]), pos_embed], axis=0 |
|
) |
|
return pos_embed |
|
|
|
|
|
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): |
|
assert embed_dim % 2 == 0 |
|
|
|
|
|
emb_h = get_1d_sincos_pos_embed_from_grid( |
|
embed_dim // 2, grid[0] |
|
) |
|
emb_w = get_1d_sincos_pos_embed_from_grid( |
|
embed_dim // 2, grid[1] |
|
) |
|
|
|
emb = np.concatenate([emb_h, emb_w], axis=1) |
|
return emb |
|
|
|
|
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): |
|
""" |
|
embed_dim: output dimension for each position |
|
pos: a list of positions to be encoded: size (M,) |
|
out: (M, D) |
|
""" |
|
assert embed_dim % 2 == 0 |
|
omega = np.arange(embed_dim // 2, dtype=np.float32) |
|
omega /= embed_dim / 2.0 |
|
omega = 1.0 / 10000**omega |
|
|
|
pos = pos.reshape(-1) |
|
out = np.einsum("m,d->md", pos, omega) |
|
|
|
emb_sin = np.sin(out) |
|
emb_cos = np.cos(out) |
|
|
|
emb = np.concatenate([emb_sin, emb_cos], axis=1) |
|
return emb |
|
|
|
|
|
def interpolate_pos_embed(checkpoint_model, model, orig_t_size=4, pos_name='vision_encoder.pos_embed'): |
|
if pos_name in checkpoint_model: |
|
pos_embed_checkpoint = checkpoint_model[pos_name] |
|
embedding_size = pos_embed_checkpoint.shape[-1] |
|
num_patches = model.patch_embed.num_patches |
|
num_extra_tokens = model.pos_embed.shape[-2] - num_patches |
|
|
|
|
|
new_t_size = model.T |
|
|
|
orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5) |
|
|
|
new_size = int((num_patches // (new_t_size))** 0.5) |
|
|
|
|
|
if orig_t_size != new_t_size: |
|
print(f"Temporal interpolate from {orig_t_size} to {new_t_size} ({pos_name})") |
|
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] |
|
|
|
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] |
|
|
|
pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size) |
|
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size) |
|
pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear') |
|
pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size) |
|
pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size) |
|
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) |
|
checkpoint_model[pos_name] = new_pos_embed |
|
pos_embed_checkpoint = new_pos_embed |
|
|
|
|
|
if orig_size != new_size: |
|
print(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size} ({pos_name})") |
|
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] |
|
|
|
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] |
|
|
|
pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size) |
|
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) |
|
pos_tokens = torch.nn.functional.interpolate( |
|
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) |
|
|
|
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size) |
|
pos_tokens = pos_tokens.flatten(1, 3) |
|
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) |
|
checkpoint_model[pos_name] = new_pos_embed |
|
|
|
|
|
def interpolate_pos_embed_internvideo2(checkpoint_model, model, orig_t_size = 8): |
|
|
|
for pos_name in ['pos_embed', 'clip_pos_embed']: |
|
if pos_name in checkpoint_model: |
|
pos_embed_checkpoint = checkpoint_model[pos_name] |
|
embedding_size = pos_embed_checkpoint.shape[-1] |
|
num_patches = model.patch_embed.num_patches |
|
num_extra_tokens = model.pos_embed.shape[-2] - num_patches |
|
|
|
|
|
|
|
new_t_size = model.num_frames // model.tubelet_size |
|
|
|
orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5) |
|
|
|
new_size = int((num_patches // (new_t_size))** 0.5) |
|
|
|
|
|
if orig_t_size != new_t_size: |
|
print(f"Temporal interpolate from {orig_t_size} to {new_t_size} ({pos_name})") |
|
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] |
|
|
|
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] |
|
|
|
pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size) |
|
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size) |
|
pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear') |
|
pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size) |
|
pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size) |
|
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) |
|
checkpoint_model[pos_name] = new_pos_embed |
|
pos_embed_checkpoint = new_pos_embed |
|
|
|
|
|
if orig_size != new_size: |
|
print(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size} ({pos_name})") |
|
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] |
|
|
|
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] |
|
|
|
pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size) |
|
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) |
|
pos_tokens = torch.nn.functional.interpolate( |
|
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) |
|
|
|
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size) |
|
pos_tokens = pos_tokens.flatten(1, 3) |
|
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) |
|
checkpoint_model[pos_name] = new_pos_embed |
|
|
|
if 'pos_embed_spatial' in checkpoint_model or 'pos_embed_temporal' in checkpoint_model: |
|
raise NotImplementedError |
|
|
|
|
|
def interpolate_pos_embed_internvideo2_new(checkpoint_model, model, orig_t_size = 8): |
|
pos_names = [] |
|
for k in checkpoint_model.keys(): |
|
if ('pos_embed' in k or 'clip_pos_embed' in k) and 'img_pos_embed' not in k: |
|
pos_names.append(k) |
|
|
|
print(f"pos names list for interpolating: {pos_names}") |
|
|
|
assert len(pos_names) > 0, checkpoint_model.keys() |
|
|
|
if 'pos_embed_spatial' in checkpoint_model.keys() or 'pos_embed_temporal' in checkpoint_model.keys(): |
|
raise NotImplementedError |
|
|
|
|
|
for pos_name in pos_names: |
|
|
|
pos_embed_checkpoint = checkpoint_model[pos_name] |
|
embedding_size = pos_embed_checkpoint.shape[-1] |
|
num_patches = model.patch_embed.num_patches |
|
num_extra_tokens = model.pos_embed.shape[-2] - num_patches |
|
|
|
|
|
|
|
new_t_size = model.num_frames // model.tubelet_size |
|
|
|
orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5) |
|
|
|
new_size = int((num_patches // (new_t_size))** 0.5) |
|
|
|
|
|
if orig_t_size != new_t_size: |
|
print(f"Temporal interpolate from {orig_t_size} to {new_t_size} ({pos_name})") |
|
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] |
|
|
|
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] |
|
|
|
pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size) |
|
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size) |
|
pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear') |
|
pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size) |
|
pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size) |
|
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) |
|
checkpoint_model[pos_name] = new_pos_embed |
|
pos_embed_checkpoint = new_pos_embed |
|
|
|
|
|
if orig_size != new_size: |
|
print(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size} ({pos_name})") |
|
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] |
|
|
|
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] |
|
|
|
pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size) |
|
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) |
|
pos_tokens = torch.nn.functional.interpolate( |
|
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) |
|
|
|
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size) |
|
pos_tokens = pos_tokens.flatten(1, 3) |
|
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) |
|
checkpoint_model[pos_name] = new_pos_embed |
|
|
|
|
|
def get_3d_sincos_pos_embed(embed_dim, grid_size, t_size, cls_token=False): |
|
""" |
|
grid_size: int of the grid height and width |
|
t_size: int of the temporal size |
|
return: |
|
pos_embed: [t_size*grid_size*grid_size, embed_dim] or [1+t_size*grid_size*grid_size, embed_dim] (w/ or w/o cls_token) |
|
""" |
|
assert embed_dim % 4 == 0 |
|
embed_dim_spatial = embed_dim // 4 * 3 |
|
embed_dim_temporal = embed_dim // 4 |
|
|
|
|
|
grid_h = np.arange(grid_size, dtype=np.float32) |
|
grid_w = np.arange(grid_size, dtype=np.float32) |
|
grid = np.meshgrid(grid_w, grid_h) |
|
grid = np.stack(grid, axis=0) |
|
|
|
grid = grid.reshape([2, 1, grid_size, grid_size]) |
|
pos_embed_spatial = get_2d_sincos_pos_embed_from_grid( |
|
embed_dim_spatial, grid |
|
) |
|
|
|
|
|
grid_t = np.arange(t_size, dtype=np.float32) |
|
pos_embed_temporal = get_1d_sincos_pos_embed_from_grid( |
|
embed_dim_temporal, grid_t |
|
) |
|
|
|
|
|
pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :] |
|
pos_embed_temporal = np.repeat( |
|
pos_embed_temporal, grid_size**2, axis=1 |
|
) |
|
pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :] |
|
pos_embed_spatial = np.repeat( |
|
pos_embed_spatial, t_size, axis=0 |
|
) |
|
|
|
pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1) |
|
pos_embed = pos_embed.reshape([-1, embed_dim]) |
|
|
|
if cls_token: |
|
pos_embed = np.concatenate( |
|
[np.zeros([1, embed_dim]), pos_embed], axis=0 |
|
) |
|
return pos_embed |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" 3D Image to Patch Embedding |
|
""" |
|
|
|
def __init__( |
|
self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, |
|
num_frames=8, tubelet_size=1, norm_layer=None |
|
): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.grid_size = ( |
|
num_frames // tubelet_size, |
|
img_size[0] // patch_size[0], |
|
img_size[1] // patch_size[1] |
|
) |
|
self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2] |
|
self.num_img_patches = self.grid_size[1] * self.grid_size[2] |
|
|
|
self.proj = nn.Conv3d( |
|
in_channels=in_chans, out_channels=embed_dim, |
|
kernel_size=(tubelet_size, patch_size[0], patch_size[1]), |
|
stride=(tubelet_size, patch_size[0], patch_size[1]) |
|
) |
|
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
x = x.flatten(3).permute(0, 2, 3, 1) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
class CrossAttention(nn.Module): |
|
def __init__( |
|
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., |
|
proj_drop=0., attn_head_dim=None, out_dim=None): |
|
super().__init__() |
|
if out_dim is None: |
|
out_dim = dim |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
if attn_head_dim is not None: |
|
head_dim = attn_head_dim |
|
all_head_dim = head_dim * self.num_heads |
|
self.scale = qk_scale or head_dim ** -0.5 |
|
assert all_head_dim == dim |
|
|
|
self.q = nn.Linear(dim, all_head_dim, bias=False) |
|
self.k = nn.Linear(dim, all_head_dim, bias=False) |
|
self.v = nn.Linear(dim, all_head_dim, bias=False) |
|
|
|
if qkv_bias: |
|
self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
self.k_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
else: |
|
self.q_bias = None |
|
self.k_bias = None |
|
self.v_bias = None |
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(all_head_dim, out_dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x, k=None, v=None): |
|
B, N, C = x.shape |
|
N_k = k.shape[1] |
|
N_v = v.shape[1] |
|
|
|
q_bias, k_bias, v_bias = None, None, None |
|
if self.q_bias is not None: |
|
q_bias = self.q_bias |
|
k_bias = self.k_bias |
|
v_bias = self.v_bias |
|
|
|
q = F.linear(input=x, weight=self.q.weight, bias=q_bias) |
|
q = q.reshape(B, N, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) |
|
|
|
k = F.linear(input=k, weight=self.k.weight, bias=k_bias) |
|
k = k.reshape(B, N_k, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) |
|
|
|
v = F.linear(input=v, weight=self.v.weight, bias=v_bias) |
|
v = v.reshape(B, N_v, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) |
|
|
|
q = q * self.scale |
|
attn = (q @ k.transpose(-2, -1)) |
|
|
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
|
|
return x |
|
|
|
|
|
class AttentiveBlock(nn.Module): |
|
|
|
def __init__(self, dim, num_heads, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., norm_layer=nn.LayerNorm, attn_head_dim=None, out_dim=None): |
|
super().__init__() |
|
|
|
self.norm1_q = norm_layer(dim) |
|
self.norm1_k = norm_layer(dim) |
|
self.norm1_v = norm_layer(dim) |
|
self.cross_attn = CrossAttention( |
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, |
|
proj_drop=drop, attn_head_dim=attn_head_dim, out_dim=out_dim) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
def forward(self, x_q, x_kv, pos_q, pos_k, bool_masked_pos, rel_pos_bias=None): |
|
x_q = self.norm1_q(x_q + pos_q) |
|
x_k = self.norm1_k(x_kv + pos_k) |
|
x_v = self.norm1_v(x_kv) |
|
x = self.cross_attn(x_q, k=x_k, v=x_v) |
|
|
|
return x |
|
|
|
|
|
class AttentionPoolingBlock(AttentiveBlock): |
|
|
|
def forward(self, x): |
|
x_q = x.mean(1, keepdim=True) |
|
x_kv, pos_q, pos_k = x, 0, 0 |
|
x = super().forward(x_q, x_kv, pos_q, pos_k, bool_masked_pos=None, rel_pos_bias=None) |
|
x = x.squeeze(1) |
|
return x |
|
|
|
|
|
class LayerScale(nn.Module): |
|
def __init__(self, dim, init_values=1e-5, inplace=False, force_fp32=False): |
|
super().__init__() |
|
self.inplace = inplace |
|
self.gamma = nn.Parameter(init_values * torch.ones(dim)) |
|
self.force_fp32 = force_fp32 |
|
|
|
@torch.cuda.amp.autocast(enabled=False) |
|
def forward(self, x): |
|
if self.force_fp32: |
|
output_type = x.dtype |
|
out = x.float().mul_(self.gamma.float()) if self.inplace else x.float() * self.gamma.float() |
|
return out.to(dtype=output_type) |
|
else: |
|
out = x.mul_(self.gamma) if self.inplace else x * self.gamma |
|
return out |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., use_flash_attn=False, |
|
causal=False, norm_layer=nn.LayerNorm, qk_normalization=False, use_fused_rmsnorm=False): |
|
super().__init__() |
|
assert dim % num_heads == 0, 'dim should be divisible by num_heads' |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = head_dim ** -0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
self.use_flash_attn = use_flash_attn |
|
if use_flash_attn: |
|
self.causal = causal |
|
self.inner_attn = FlashAttention(attention_dropout=attn_drop) |
|
|
|
self.qk_normalization = qk_normalization |
|
self.q_norm = norm_layer(dim) if qk_normalization else nn.Identity() |
|
self.k_norm = norm_layer(dim) if qk_normalization else nn.Identity() |
|
self.use_fused_rmsnorm = use_fused_rmsnorm |
|
|
|
def _naive_attn(self, x): |
|
B, N, C = x.shape |
|
|
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv.unbind(0) |
|
|
|
if self.qk_normalization: |
|
B_, H_, N_, D_ = q.shape |
|
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) |
|
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) |
|
|
|
attn = ((q * self.scale) @ k.transpose(-2, -1)) |
|
|
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
def _flash_attn(self, x, key_padding_mask=None, need_weights=False): |
|
|
|
qkv = self.qkv(x) |
|
qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, h=self.num_heads) |
|
|
|
if self.qk_normalization: |
|
q, k, v = qkv.unbind(2) |
|
if self.use_fused_rmsnorm: |
|
q = self.q_norm(q.flatten(-2, -1))[0].view(q.shape) |
|
k = self.k_norm(k.flatten(-2, -1))[0].view(k.shape) |
|
else: |
|
q = self.q_norm(q.flatten(-2, -1)).view(q.shape) |
|
k = self.k_norm(k.flatten(-2, -1)).view(k.shape) |
|
qkv = torch.stack([q, k, v], dim=2) |
|
|
|
context, _ = self.inner_attn( |
|
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=self.causal |
|
) |
|
outs = self.proj(rearrange(context, "b s h d -> b s (h d)")) |
|
outs = self.proj_drop(outs) |
|
return outs |
|
|
|
def forward(self, x): |
|
x = self._naive_attn(x) if not self.use_flash_attn else self._flash_attn(x) |
|
return x |
|
|
|
|
|
class Mlp(nn.Module): |
|
""" MLP as used in Vision Transformer, MLP-Mixer and related networks |
|
""" |
|
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, |
|
bias=True, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
bias = to_2tuple(bias) |
|
drop_probs = to_2tuple(drop) |
|
|
|
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0]) |
|
self.act = act_layer() |
|
self.drop1 = nn.Dropout(drop_probs[0]) |
|
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1]) |
|
self.drop2 = nn.Dropout(drop_probs[1]) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop1(x) |
|
x = self.fc2(x) |
|
x = self.drop2(x) |
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
|
|
def __init__( |
|
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None, |
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_flash_attn=False, use_fused_mlp=False, |
|
fused_mlp_heuristic=1, with_cp=False, qk_normalization=False, layerscale_no_force_fp32=False, |
|
use_fused_rmsnorm=False): |
|
super().__init__() |
|
|
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, |
|
use_flash_attn=use_flash_attn, causal=False, norm_layer=norm_layer, |
|
qk_normalization=qk_normalization, |
|
use_fused_rmsnorm=use_fused_rmsnorm) |
|
self.ls1 = LayerScale(dim, init_values=init_values, |
|
force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity() |
|
|
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
if use_fused_mlp: |
|
self.mlp = FusedMLP(in_features=dim, hidden_features=mlp_hidden_dim, heuristic=fused_mlp_heuristic) |
|
else: |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
self.ls2 = LayerScale(dim, init_values=init_values, |
|
force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity() |
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
self.with_cp = with_cp |
|
self.use_fused_rmsnorm = use_fused_rmsnorm |
|
|
|
def forward(self, x, residual=None): |
|
|
|
def _inner_forward(x, residual=None): |
|
if self.use_fused_rmsnorm: |
|
x, residual = self.norm1(x, residual) |
|
x = self.drop_path1(self.ls1(self.attn(x))) |
|
x, residual = self.norm2(x, residual) |
|
x = self.drop_path2(self.ls2(self.mlp(x))) |
|
return x, residual |
|
else: |
|
assert residual is None |
|
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x)))) |
|
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) |
|
return x |
|
|
|
if self.with_cp: |
|
return checkpoint.checkpoint(_inner_forward, x, residual) |
|
else: |
|
return _inner_forward(x, residual=residual) |
|
|
|
|
|
class Linear_Decoder(nn.Module): |
|
def __init__(self, in_channels=1408, out_channels=3200, |
|
norm_layer=nn.LayerNorm, clip_norm_type='l2'): |
|
super().__init__() |
|
self.clip_norm_type = clip_norm_type |
|
|
|
self.head = nn.Linear(in_channels, out_channels) |
|
self.norm = norm_layer(out_channels) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
nn.init.xavier_uniform_(m.weight) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def forward(self, x): |
|
x = self.norm(self.head(x)) |
|
|
|
if self.clip_norm_type == 'l2': |
|
x = x / x.norm(dim=-1, keepdim=True) |
|
elif self.clip_norm_type == 'none': |
|
pass |
|
else: |
|
raise NotImplementedError |
|
|
|
return x |
|
|
|
|
|
class PretrainInternVideo2(nn.Module): |
|
def __init__( |
|
self, |
|
in_chans: int = 3, |
|
patch_size: int = 14, |
|
img_size: int = 224, |
|
qkv_bias: bool = False, |
|
drop_path_rate: float = 0.25, |
|
embed_dim: int = 1408, |
|
num_heads: int = 16, |
|
mlp_ratio: float = 48/11, |
|
init_values: float = 1e-5, |
|
qk_normalization: bool = True, |
|
depth: int = 40, |
|
use_flash_attn: bool = True, |
|
use_fused_rmsnorm: bool = True, |
|
use_fused_mlp: bool = True, |
|
fused_mlp_heuristic: int = 1, |
|
attn_pool_num_heads: int = 16, |
|
clip_embed_dim: int = 768, |
|
layerscale_no_force_fp32: bool = False, |
|
num_frames: int = 8, |
|
tubelet_size: int = 1, |
|
sep_pos_embed: bool = False, |
|
sep_image_video_pos_embed: bool = False, |
|
use_checkpoint: bool = False, |
|
checkpoint_num: int = 0, |
|
|
|
clip_teacher_embed_dim: int = 3200, |
|
clip_teacher_final_dim: int = 768, |
|
clip_norm_type: str = 'l2', |
|
clip_return_layer: int = 1, |
|
clip_student_return_interval: int = 1, |
|
): |
|
super().__init__() |
|
|
|
self.num_frames = num_frames |
|
self.tubelet_size = tubelet_size |
|
assert use_flash_attn == use_fused_rmsnorm == use_fused_mlp, 'use_flash_attn, use_fused_rmsnorm and use_fused_mlp should be consistent' |
|
|
|
self.use_flash_attn = use_flash_attn |
|
self.embed_dim = embed_dim |
|
|
|
self.depth = depth |
|
self.clip_norm_type = clip_norm_type |
|
self.return_index = [] |
|
for i in range(clip_return_layer): |
|
self.return_index.append(depth - int(i * clip_student_return_interval) - 1) |
|
|
|
if use_fused_rmsnorm: |
|
norm_layer_for_blocks = partial(DropoutAddRMSNorm, eps=1e-6, prenorm=True) |
|
else: |
|
norm_layer_for_blocks = partial(RMSNorm, eps=1e-6) |
|
self.norm_layer_for_blocks = norm_layer_for_blocks |
|
self.patch_embed = PatchEmbed( |
|
img_size, patch_size, in_chans, embed_dim, |
|
num_frames=num_frames, tubelet_size=tubelet_size, |
|
) |
|
num_patches = self.patch_embed.num_patches |
|
num_img_patches = self.patch_embed.num_img_patches |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) |
|
|
|
|
|
self.sep_pos_embed = sep_pos_embed |
|
self.sep_image_video_pos_embed = sep_image_video_pos_embed |
|
if sep_pos_embed: |
|
raise NotImplementedError |
|
else: |
|
if sep_image_video_pos_embed: |
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) |
|
self.img_pos_embed = nn.Parameter(torch.zeros(1, num_img_patches + 1, embed_dim)) |
|
|
|
self.clip_pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) |
|
self.clip_img_pos_embed = nn.Parameter(torch.zeros(1, num_img_patches + 1, embed_dim)) |
|
else: |
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) |
|
self.clip_pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) |
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] |
|
|
|
with_cp_list = [False] * depth |
|
if use_checkpoint: |
|
for idx in range(depth): |
|
if idx < checkpoint_num: |
|
with_cp_list[idx] = True |
|
|
|
self.blocks = nn.ModuleList([ |
|
Block(embed_dim, num_heads, mlp_ratio, qkv_bias=qkv_bias, |
|
norm_layer=norm_layer_for_blocks, |
|
drop_path=dpr[i], init_values=init_values, attn_drop=0., |
|
use_flash_attn=use_flash_attn, use_fused_mlp=use_fused_mlp, |
|
fused_mlp_heuristic=fused_mlp_heuristic, |
|
with_cp=with_cp_list[i], |
|
qk_normalization=qk_normalization, |
|
layerscale_no_force_fp32=layerscale_no_force_fp32, |
|
use_fused_rmsnorm=use_fused_rmsnorm) |
|
for i in range(depth)]) |
|
self.clip_projector = AttentionPoolingBlock( |
|
dim=embed_dim, num_heads=attn_pool_num_heads, qkv_bias=True, qk_scale=None, |
|
drop=0., attn_drop=0., norm_layer=partial(nn.LayerNorm, eps=1e-5), out_dim=clip_embed_dim) |
|
|
|
|
|
self.clip_decoder = nn.ModuleList([ |
|
Linear_Decoder( |
|
in_channels=embed_dim, |
|
out_channels=clip_teacher_embed_dim, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-5), |
|
clip_norm_type=clip_norm_type |
|
) for _ in range(clip_return_layer) |
|
]) |
|
self.final_clip_decoder = nn.Identity() |
|
if clip_teacher_final_dim > 0: |
|
self.final_clip_decoder = Linear_Decoder( |
|
in_channels=clip_embed_dim, |
|
out_channels=clip_teacher_final_dim, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-5), |
|
clip_norm_type=clip_norm_type |
|
) |
|
|
|
self.init_pos_embed() |
|
trunc_normal_(self.cls_token, std=.02) |
|
self.apply(self._init_weights) |
|
self.fix_init_weight() |
|
|
|
def init_pos_embed(self): |
|
if self.sep_pos_embed: |
|
raise NotImplementedError |
|
else: |
|
|
|
|
|
pos_embed = get_3d_sincos_pos_embed( |
|
self.pos_embed.shape[-1], |
|
self.patch_embed.grid_size[1], |
|
self.patch_embed.grid_size[0], |
|
cls_token=True |
|
) |
|
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) |
|
self.clip_pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) |
|
|
|
if self.sep_image_video_pos_embed: |
|
img_pos_embed = get_3d_sincos_pos_embed( |
|
self.pos_embed.shape[-1], |
|
self.patch_embed.grid_size[1], |
|
1, |
|
cls_token=True |
|
) |
|
self.img_pos_embed.data.copy_(torch.from_numpy(img_pos_embed).float().unsqueeze(0)) |
|
self.clip_img_pos_embed.data.copy_(torch.from_numpy(img_pos_embed).float().unsqueeze(0)) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def fix_init_weight(self): |
|
def rescale(param, layer_id): |
|
param.div_(math.sqrt(2.0 * layer_id)) |
|
|
|
for layer_id, layer in enumerate(self.blocks): |
|
rescale(layer.attn.proj.weight.data, layer_id + 1) |
|
rescale(layer.mlp.fc2.weight.data, layer_id + 1) |
|
|
|
@property |
|
def dtype(self): |
|
return self.patch_embed.proj.weight.dtype |
|
|
|
def get_num_layers(self): |
|
return len(self.blocks) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return { |
|
'pos_embed', |
|
'pos_embed_spatial', |
|
'pos_embed_temporal', |
|
'pos_embed_cls', |
|
'img_pos_embed', |
|
'cls_token', |
|
'clip_pos_embed', |
|
'clip_pos_embed_spatial', |
|
'clip_pos_embed_temporal', |
|
'clip_pos_embed_cls', |
|
'clip_img_pos_embed' |
|
} |
|
|
|
|
|
def forward(self, x, mask=None, use_image=False, x_vis_return_idx=-1, x_vis_only=False): |
|
x = self.patch_embed(x.type(self.dtype)) |
|
|
|
B, T, L, C = x.shape |
|
x = x.view([B, T * L, C]) |
|
|
|
|
|
cls_tokens = self.cls_token.expand(B, -1, -1) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
|
|
|
|
if self.sep_pos_embed: |
|
raise NotImplementedError |
|
else: |
|
if use_image: |
|
if self.sep_image_video_pos_embed: |
|
pos_embed = self.img_pos_embed |
|
else: |
|
|
|
|
|
cls_pos_embed = self.pos_embed[:, 0:1, :] |
|
|
|
|
|
img_pos_embed = self.pos_embed[:, 1:, :].view(1, self.num_frames, self.patch_embed.num_patches // self.num_frames, self.embed_dim).mean(dim=1) |
|
|
|
|
|
pos_embed = torch.cat([cls_pos_embed, img_pos_embed], dim=1) |
|
|
|
else: |
|
pos_embed = self.pos_embed |
|
x = x + pos_embed |
|
|
|
|
|
if mask is not None: |
|
x = x[~mask].reshape(B, -1, C) |
|
else: |
|
x = x.reshape(B, -1, C) |
|
|
|
residual = None |
|
x_clip = [] |
|
for idx, blk in enumerate(self.blocks): |
|
if isinstance(x, tuple) and len(x) == 2: |
|
x, residual = x |
|
|
|
x = blk(x, residual=residual) |
|
|
|
if idx in self.return_index: |
|
if isinstance(x, tuple) and len(x) == 2: |
|
tmp_x, tmp_residual = x |
|
if residual is not None: |
|
x_clip.append(tmp_x + tmp_residual) |
|
else: |
|
x_clip.append(x) |
|
if idx == (self.depth + x_vis_return_idx): |
|
|
|
break |
|
|
|
if isinstance(x, tuple) and len(x) == 2: |
|
x, residual = x |
|
if residual is not None: |
|
x = x + residual |
|
|
|
x_vis = x |
|
if x_vis_only: |
|
return x_vis |
|
|
|
x_pool_vis = self.clip_projector(x_vis) |
|
x_align = self.final_clip_decoder(x_pool_vis) |
|
|
|
|
|
x_clip = torch.stack(x_clip) |
|
K, B, _, C_CLIP = x_clip.shape |
|
|
|
if self.sep_pos_embed: |
|
raise NotImplementedError |
|
else: |
|
if use_image: |
|
if self.sep_image_video_pos_embed: |
|
clip_pos_embed = self.clip_img_pos_embed |
|
else: |
|
|
|
|
|
clip_cls_pos_embed = self.clip_pos_embed[:, 0:1, :] |
|
|
|
|
|
clip_img_pos_embed = self.clip_pos_embed[:, 1:, :].view(1, self.num_frames, self.patch_embed.num_patches // self.num_frames, self.embed_dim).mean(dim=1) |
|
|
|
|
|
clip_pos_embed = torch.cat([clip_cls_pos_embed, clip_img_pos_embed], dim=1) |
|
|
|
|
|
else: |
|
clip_pos_embed = self.clip_pos_embed |
|
|
|
clip_pos_embed = clip_pos_embed.repeat(B, 1, 1) |
|
if mask is not None: |
|
x_clip = x_clip + clip_pos_embed[~mask].view(B, -1, C_CLIP).unsqueeze(0).repeat(K, 1, 1, 1) |
|
else: |
|
x_clip = x_clip + clip_pos_embed.view(B, -1, C_CLIP).unsqueeze(0).repeat(K, 1, 1, 1) |
|
|
|
|
|
x_clip_align = [] |
|
for idx, clip_decoder in enumerate(self.clip_decoder): |
|
x_clip_align.append(clip_decoder(x_clip[idx])) |
|
x_clip_align = torch.stack(x_clip_align) |
|
|
|
return x_vis, x_pool_vis, x_clip_align, x_align |
|
|
|
|
|
def pretrain_internvideo2_1b_patch14_224(config): |
|
model = PretrainInternVideo2( |
|
in_chans=3, img_size=224, patch_size=14, |
|
embed_dim=1408, depth=40, num_heads=16, mlp_ratio=48/11, |
|
clip_embed_dim=config.vision_encoder.clip_embed_dim, |
|
attn_pool_num_heads=16, qkv_bias=False, |
|
drop_path_rate=0.25, |
|
init_values=0.00001, |
|
qk_normalization=True, |
|
use_flash_attn=config.vision_encoder.use_flash_attn, |
|
use_fused_rmsnorm=config.vision_encoder.use_fused_rmsnorm, |
|
use_fused_mlp=config.vision_encoder.use_fused_mlp, |
|
fused_mlp_heuristic=1, |
|
layerscale_no_force_fp32=False, |
|
num_frames=config.vision_encoder.num_frames, |
|
tubelet_size=config.vision_encoder.tubelet_size, |
|
sep_pos_embed=False, |
|
sep_image_video_pos_embed=config.vision_encoder.sep_image_video_pos_embed, |
|
use_checkpoint=config.vision_encoder.use_checkpoint, |
|
checkpoint_num=config.vision_encoder.checkpoint_num, |
|
clip_teacher_embed_dim=config.vision_encoder.clip_teacher_embed_dim, |
|
clip_teacher_final_dim=config.vision_encoder.clip_teacher_final_dim, |
|
clip_norm_type=config.vision_encoder.clip_norm_type, |
|
clip_return_layer=config.vision_encoder.clip_return_layer, |
|
clip_student_return_interval=config.vision_encoder.clip_student_return_interval, |
|
) |
|
|
|
return model |
|
|
|
|
|
def pretrain_internvideo2_6b_patch14_224(config): |
|
model = PretrainInternVideo2( |
|
in_chans=3, img_size=224, patch_size=14, |
|
embed_dim=3200, depth=48, num_heads=25, mlp_ratio=4, |
|
clip_embed_dim=config.vision_encoder.clip_embed_dim, |
|
attn_pool_num_heads=16, qkv_bias=False, |
|
drop_path_rate=0.3, |
|
init_values=0.00001, |
|
qk_normalization=True, |
|
use_flash_attn=config.vision_encoder.use_flash_attn, |
|
use_fused_rmsnorm=config.vision_encoder.use_fused_rmsnorm, |
|
use_fused_mlp=config.vision_encoder.use_fused_mlp, |
|
fused_mlp_heuristic=1, |
|
layerscale_no_force_fp32=False, |
|
num_frames=config.vision_encoder.num_frames, |
|
tubelet_size=config.vision_encoder.tubelet_size, |
|
sep_pos_embed=False, |
|
sep_image_video_pos_embed=config.vision_encoder.sep_image_video_pos_embed, |
|
use_checkpoint=config.vision_encoder.use_checkpoint, |
|
checkpoint_num=config.vision_encoder.checkpoint_num, |
|
clip_teacher_embed_dim=config.vision_encoder.clip_teacher_embed_dim, |
|
clip_teacher_final_dim=config.vision_encoder.clip_teacher_final_dim, |
|
clip_norm_type=config.vision_encoder.clip_norm_type, |
|
clip_return_layer=config.vision_encoder.clip_return_layer, |
|
clip_student_return_interval=config.vision_encoder.clip_student_return_interval, |
|
) |
|
|
|
return model |
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Tuple, Optional, List |
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.modeling_utils import (PreTrainedModel, |
|
apply_chunking_to_forward, |
|
find_pruneable_heads_and_indices, |
|
prune_linear_layer) |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
BaseModelOutputWithPoolingAndCrossAttentions, |
|
MaskedLMOutput, |
|
) |
|
from torch import Tensor, device |
|
from torch.nn import CrossEntropyLoss |
|
|
|
|
|
class BertConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`BertModel`] or a [`TFBertModel`]. It is used to |
|
instantiate a BERT model according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the BERT |
|
[bert-base-uncased](https://huggingface.co/bert-base-uncased) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 30522): |
|
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`]. |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. |
|
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"silu"` and `"gelu_new"` are supported. |
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the attention probabilities. |
|
max_position_embeddings (`int`, *optional*, defaults to 512): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
type_vocab_size (`int`, *optional*, defaults to 2): |
|
The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`]. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
position_embedding_type (`str`, *optional*, defaults to `"absolute"`): |
|
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For |
|
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to |
|
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). |
|
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models |
|
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
classifier_dropout (`float`, *optional*): |
|
The dropout ratio for the classification head. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import BertModel, BertConfig |
|
|
|
>>> # Initializing a BERT bert-base-uncased style configuration |
|
>>> configuration = BertConfig() |
|
|
|
>>> # Initializing a model from the bert-base-uncased style configuration |
|
>>> model = BertModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "bert" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=30522, |
|
hidden_size=768, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
intermediate_size=3072, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=512, |
|
type_vocab_size=2, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-12, |
|
pad_token_id=0, |
|
position_embedding_type="absolute", |
|
use_cache=True, |
|
classifier_dropout=None, |
|
cross_module="ca", |
|
**kwargs, |
|
): |
|
super().__init__(pad_token_id=pad_token_id, **kwargs) |
|
|
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.hidden_act = hidden_act |
|
self.intermediate_size = intermediate_size |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.type_vocab_size = type_vocab_size |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.position_embedding_type = position_embedding_type |
|
self.use_cache = use_cache |
|
self.classifier_dropout = classifier_dropout |
|
self.cross_module = cross_module |
|
|
|
|
|
def load_tf_weights_in_bert(model, config, tf_checkpoint_path): |
|
"""Load tf checkpoints in a pytorch model.""" |
|
try: |
|
import re |
|
import numpy as np |
|
import tensorflow as tf |
|
except ImportError: |
|
print( |
|
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " |
|
"https://www.tensorflow.org/install/ for installation instructions." |
|
) |
|
raise |
|
tf_path = os.path.abspath(tf_checkpoint_path) |
|
print("Converting TensorFlow checkpoint from {}".format(tf_path)) |
|
|
|
init_vars = tf.train.list_variables(tf_path) |
|
names = [] |
|
arrays = [] |
|
for name, shape in init_vars: |
|
print("Loading TF weight {} with shape {}".format(name, shape)) |
|
array = tf.train.load_variable(tf_path, name) |
|
names.append(name) |
|
arrays.append(array) |
|
|
|
for name, array in zip(names, arrays): |
|
name = name.split("/") |
|
|
|
|
|
if any( |
|
n |
|
in [ |
|
"adam_v", |
|
"adam_m", |
|
"AdamWeightDecayOptimizer", |
|
"AdamWeightDecayOptimizer_1", |
|
"global_step", |
|
] |
|
for n in name |
|
): |
|
print("Skipping {}".format("/".join(name))) |
|
continue |
|
pointer = model |
|
for m_name in name: |
|
if re.fullmatch(r"[A-Za-z]+_\d+", m_name): |
|
scope_names = re.split(r"_(\d+)", m_name) |
|
else: |
|
scope_names = [m_name] |
|
if scope_names[0] == "kernel" or scope_names[0] == "gamma": |
|
pointer = getattr(pointer, "weight") |
|
elif scope_names[0] == "output_bias" or scope_names[0] == "beta": |
|
pointer = getattr(pointer, "bias") |
|
elif scope_names[0] == "output_weights": |
|
pointer = getattr(pointer, "weight") |
|
elif scope_names[0] == "squad": |
|
pointer = getattr(pointer, "classifier") |
|
else: |
|
try: |
|
pointer = getattr(pointer, scope_names[0]) |
|
except AttributeError: |
|
print("Skipping {}".format("/".join(name))) |
|
continue |
|
if len(scope_names) >= 2: |
|
num = int(scope_names[1]) |
|
pointer = pointer[num] |
|
if m_name[-11:] == "_embeddings": |
|
pointer = getattr(pointer, "weight") |
|
elif m_name == "kernel": |
|
array = np.transpose(array) |
|
try: |
|
assert ( |
|
pointer.shape == array.shape |
|
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" |
|
except AssertionError as e: |
|
e.args += (pointer.shape, array.shape) |
|
raise |
|
print("Initialize PyTorch weight {}".format(name)) |
|
pointer.data = torch.from_numpy(array) |
|
return model |
|
|
|
|
|
class BertEmbeddings(nn.Module): |
|
"""Construct the embeddings from word, position and token_type embeddings.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.word_embeddings = nn.Embedding( |
|
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id |
|
) |
|
self.position_embeddings = nn.Embedding( |
|
config.max_position_embeddings, config.hidden_size |
|
) |
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) |
|
|
|
|
|
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
|
|
self.register_buffer( |
|
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) |
|
) |
|
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") |
|
|
|
self.config = config |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
inputs_embeds=None, |
|
past_key_values_length=0, |
|
): |
|
if input_ids is not None: |
|
input_shape = input_ids.size() |
|
else: |
|
input_shape = inputs_embeds.size()[:-1] |
|
|
|
seq_length = input_shape[1] |
|
|
|
if position_ids is None: |
|
position_ids = self.position_ids[ |
|
:, past_key_values_length : seq_length + past_key_values_length |
|
] |
|
|
|
if token_type_ids is None: |
|
token_type_ids = torch.zeros( |
|
input_shape, dtype=torch.long, device=self.position_ids.device |
|
) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
|
|
token_type_embeddings = self.token_type_embeddings(token_type_ids) |
|
|
|
embeddings = inputs_embeds + token_type_embeddings |
|
if self.position_embedding_type == "absolute": |
|
position_embeddings = self.position_embeddings(position_ids) |
|
embeddings += position_embeddings |
|
embeddings = self.LayerNorm(embeddings) |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
|
|
class BertSelfAttention(nn.Module): |
|
def __init__(self, config, is_cross_attention): |
|
super().__init__() |
|
self.config = config |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr( |
|
config, "embedding_size" |
|
): |
|
raise ValueError( |
|
"The hidden size (%d) is not a multiple of the number of attention " |
|
"heads (%d)" % (config.hidden_size, config.num_attention_heads) |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
if is_cross_attention: |
|
self.key = nn.Linear(config.encoder_width, self.all_head_size) |
|
self.value = nn.Linear(config.encoder_width, self.all_head_size) |
|
else: |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") |
|
if ( |
|
self.position_embedding_type == "relative_key" |
|
or self.position_embedding_type == "relative_key_query" |
|
): |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.distance_embedding = nn.Embedding( |
|
2 * config.max_position_embeddings - 1, self.attention_head_size |
|
) |
|
self.save_attention = False |
|
|
|
def save_attn_gradients(self, attn_gradients): |
|
self.attn_gradients = attn_gradients |
|
|
|
def get_attn_gradients(self): |
|
return self.attn_gradients |
|
|
|
def save_attention_map(self, attention_map): |
|
self.attention_map = attention_map |
|
|
|
def get_attention_map(self): |
|
return self.attention_map |
|
|
|
def transpose_for_scores(self, x): |
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) |
|
x = x.view(*new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_value=None, |
|
output_attentions=False, |
|
): |
|
mixed_query_layer = self.query(hidden_states) |
|
|
|
|
|
|
|
|
|
is_cross_attention = encoder_hidden_states is not None |
|
|
|
if is_cross_attention: |
|
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) |
|
attention_mask = encoder_attention_mask |
|
elif past_key_value is not None: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) |
|
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) |
|
else: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
past_key_value = (key_layer, value_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
if ( |
|
self.position_embedding_type == "relative_key" |
|
or self.position_embedding_type == "relative_key_query" |
|
): |
|
seq_length = hidden_states.size()[1] |
|
position_ids_l = torch.arange( |
|
seq_length, dtype=torch.long, device=hidden_states.device |
|
).view(-1, 1) |
|
position_ids_r = torch.arange( |
|
seq_length, dtype=torch.long, device=hidden_states.device |
|
).view(1, -1) |
|
distance = position_ids_l - position_ids_r |
|
positional_embedding = self.distance_embedding( |
|
distance + self.max_position_embeddings - 1 |
|
) |
|
positional_embedding = positional_embedding.to( |
|
dtype=query_layer.dtype |
|
) |
|
|
|
if self.position_embedding_type == "relative_key": |
|
relative_position_scores = torch.einsum( |
|
"bhld,lrd->bhlr", query_layer, positional_embedding |
|
) |
|
attention_scores = attention_scores + relative_position_scores |
|
elif self.position_embedding_type == "relative_key_query": |
|
relative_position_scores_query = torch.einsum( |
|
"bhld,lrd->bhlr", query_layer, positional_embedding |
|
) |
|
relative_position_scores_key = torch.einsum( |
|
"bhrd,lrd->bhlr", key_layer, positional_embedding |
|
) |
|
attention_scores = ( |
|
attention_scores |
|
+ relative_position_scores_query |
|
+ relative_position_scores_key |
|
) |
|
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
if attention_mask is not None: |
|
|
|
attention_scores = attention_scores + attention_mask |
|
|
|
|
|
attention_probs = nn.Softmax(dim=-1)(attention_scores) |
|
|
|
if is_cross_attention and self.save_attention: |
|
self.save_attention_map(attention_probs) |
|
attention_probs.register_hook(self.save_attn_gradients) |
|
|
|
|
|
|
|
attention_probs_dropped = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs_dropped = attention_probs_dropped * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs_dropped, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(*new_context_layer_shape) |
|
|
|
|
|
outputs = ( |
|
(context_layer, attention_probs, attention_scores) |
|
if output_attentions |
|
else (context_layer,) |
|
) |
|
|
|
outputs = outputs + (past_key_value,) |
|
return outputs |
|
|
|
|
|
class BertSelfOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class BertAttention(nn.Module): |
|
def __init__(self, config, is_cross_attention=False): |
|
super().__init__() |
|
|
|
self.self = BertSelfAttention(config, is_cross_attention) |
|
|
|
self.output = BertSelfOutput(config) |
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, |
|
self.self.num_attention_heads, |
|
self.self.attention_head_size, |
|
self.pruned_heads, |
|
) |
|
|
|
|
|
self.self.query = prune_linear_layer(self.self.query, index) |
|
self.self.key = prune_linear_layer(self.self.key, index) |
|
self.self.value = prune_linear_layer(self.self.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) |
|
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_value=None, |
|
output_attentions=False, |
|
): |
|
self_outputs = self.self( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
|
|
outputs = (attention_output,) + self_outputs[1:] |
|
return outputs |
|
|
|
|
|
class BertIntermediate(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BertOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class BertLayer(nn.Module): |
|
def __init__(self, config, layer_num): |
|
super().__init__() |
|
self.config = config |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = BertAttention(config) |
|
|
|
self.has_cross_attention = layer_num >= config.fusion_layer |
|
if self.has_cross_attention: |
|
self.crossattention = BertAttention(config, is_cross_attention=True) |
|
self.intermediate = BertIntermediate(config) |
|
self.output = BertOutput(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_value=None, |
|
output_attentions=False, |
|
): |
|
|
|
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None |
|
self_attention_outputs = self.attention( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
output_attentions=output_attentions, |
|
past_key_value=self_attn_past_key_value, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
|
|
outputs = self_attention_outputs[1:-1] |
|
present_key_value = self_attention_outputs[-1] |
|
|
|
if self.has_cross_attention: |
|
assert ( |
|
encoder_hidden_states is not None |
|
), "encoder_hidden_states must be given for cross-attention layers" |
|
|
|
if type(encoder_hidden_states) == list: |
|
cross_attention_outputs = self.crossattention( |
|
attention_output, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states[ |
|
(self.layer_num - self.config.fusion_layer) |
|
% len(encoder_hidden_states) |
|
], |
|
encoder_attention_mask[ |
|
(self.layer_num - self.config.fusion_layer) |
|
% len(encoder_hidden_states) |
|
], |
|
output_attentions=output_attentions, |
|
) |
|
attention_output = cross_attention_outputs[0] |
|
outputs = outputs + cross_attention_outputs[1:-1] |
|
|
|
else: |
|
cross_attention_outputs = self.crossattention( |
|
attention_output, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
) |
|
attention_output = cross_attention_outputs[0] |
|
|
|
outputs = outputs + cross_attention_outputs[1:-1] |
|
layer_output = apply_chunking_to_forward( |
|
self.feed_forward_chunk, |
|
self.chunk_size_feed_forward, |
|
self.seq_len_dim, |
|
attention_output, |
|
) |
|
outputs = (layer_output,) + outputs |
|
|
|
outputs = outputs + (present_key_value,) |
|
|
|
return outputs |
|
|
|
def feed_forward_chunk(self, attention_output): |
|
intermediate_output = self.intermediate(attention_output) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
|
|
class BertEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList( |
|
[BertLayer(config, i) for i in range(config.num_hidden_layers)] |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_values=None, |
|
use_cache=None, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
return_dict=True, |
|
mode="multi_modal", |
|
normalize_attention=True, |
|
): |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
|
|
all_cross_attentions = () if output_attentions else None |
|
|
|
next_decoder_cache = () if use_cache else None |
|
|
|
if ( |
|
mode == "text" or mode == "temporal" |
|
): |
|
start_layer = 0 |
|
output_layer = self.config.fusion_layer |
|
|
|
elif mode == "fusion": |
|
start_layer = self.config.fusion_layer |
|
output_layer = self.config.num_hidden_layers |
|
|
|
elif mode == "multi_modal": |
|
start_layer = 0 |
|
output_layer = self.config.num_hidden_layers |
|
|
|
for i in range(start_layer, output_layer): |
|
layer_module = self.layer[i] |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
past_key_value = past_key_values[i] if past_key_values is not None else None |
|
|
|
if getattr(self.config, "gradient_checkpointing", False) and self.training: |
|
|
|
if use_cache: |
|
print( |
|
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " |
|
"`use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, past_key_value, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer_module), |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
use_reentrant=False, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
hidden_states = layer_outputs[0] |
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[-1],) |
|
if output_attentions: |
|
|
|
|
|
offset = int(normalize_attention) |
|
|
|
all_self_attentions = all_self_attentions + (layer_outputs[2 - offset],) |
|
if hasattr(layer_module, "crossattention"): |
|
|
|
all_cross_attentions = all_cross_attentions + (layer_outputs[4 - offset],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
next_decoder_cache, |
|
all_hidden_states, |
|
all_self_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_decoder_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
class BertPooler(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states): |
|
|
|
|
|
first_token_tensor = hidden_states[:, 0] |
|
pooled_output = self.dense(first_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
class BertPredictionHeadTransform(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
if isinstance(config.hidden_act, str): |
|
self.transform_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.transform_act_fn = config.hidden_act |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.transform_act_fn(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BertLMPredictionHead(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.transform = BertPredictionHeadTransform(config) |
|
|
|
|
|
|
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) |
|
|
|
|
|
self.decoder.bias = self.bias |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.transform(hidden_states) |
|
hidden_states = self.decoder(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BertOnlyMLMHead(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.predictions = BertLMPredictionHead(config) |
|
|
|
def forward(self, sequence_output): |
|
prediction_scores = self.predictions(sequence_output) |
|
return prediction_scores |
|
|
|
|
|
class BertOnlyNSPHead(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.seq_relationship = nn.Linear(config.hidden_size, 2) |
|
|
|
def forward(self, pooled_output): |
|
seq_relationship_score = self.seq_relationship(pooled_output) |
|
return seq_relationship_score |
|
|
|
|
|
class BertPreTrainingHeads(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.predictions = BertLMPredictionHead(config) |
|
self.seq_relationship = nn.Linear(config.hidden_size, 2) |
|
|
|
def forward(self, sequence_output, pooled_output): |
|
prediction_scores = self.predictions(sequence_output) |
|
seq_relationship_score = self.seq_relationship(pooled_output) |
|
return prediction_scores, seq_relationship_score |
|
|
|
|
|
class BertPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = BertConfig |
|
load_tf_weights = load_tf_weights_in_bert |
|
base_model_prefix = "bert" |
|
_keys_to_ignore_on_load_missing = [r"position_ids"] |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, (nn.Linear, nn.Embedding)): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
if isinstance(module, nn.Linear) and module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
|
|
class BertModel(BertPreTrainedModel): |
|
""" |
|
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of |
|
cross-attention is added between the self-attention layers, following the architecture described in `Attention is |
|
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, |
|
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. |
|
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an |
|
input to the forward pass. |
|
""" |
|
|
|
def __init__(self, config, add_pooling_layer=True): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = BertEmbeddings(config) |
|
|
|
self.encoder = BertEncoder(config) |
|
|
|
self.pooler = BertPooler(config) if add_pooling_layer else None |
|
|
|
self.init_weights() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embeddings.word_embeddings = value |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
def get_extended_attention_mask( |
|
self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool |
|
) -> Tensor: |
|
""" |
|
Makes broadcastable attention and causal masks so that future and masked tokens are ignored. |
|
|
|
Arguments: |
|
attention_mask (:obj:`torch.Tensor`): |
|
Mask with ones indicating tokens to attend to, zeros for tokens to ignore. |
|
input_shape (:obj:`Tuple[int]`): |
|
The shape of the input to the model. |
|
device: (:obj:`torch.device`): |
|
The device of the input to the model. |
|
|
|
Returns: |
|
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`. |
|
""" |
|
|
|
|
|
if attention_mask.dim() == 3: |
|
extended_attention_mask = attention_mask[:, None, :, :] |
|
elif attention_mask.dim() == 2: |
|
|
|
|
|
|
|
if is_decoder: |
|
batch_size, seq_length = input_shape |
|
seq_ids = torch.arange(seq_length, device=device) |
|
causal_mask = ( |
|
seq_ids[None, None, :].repeat(batch_size, seq_length, 1) |
|
<= seq_ids[None, :, None] |
|
) |
|
|
|
|
|
causal_mask = causal_mask.to(attention_mask.dtype) |
|
|
|
if causal_mask.shape[1] < attention_mask.shape[1]: |
|
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1] |
|
causal_mask = torch.cat( |
|
[ |
|
torch.ones( |
|
(batch_size, seq_length, prefix_seq_len), |
|
device=device, |
|
dtype=causal_mask.dtype, |
|
), |
|
causal_mask, |
|
], |
|
axis=-1, |
|
) |
|
|
|
extended_attention_mask = ( |
|
causal_mask[:, None, :, :] * attention_mask[:, None, None, :] |
|
) |
|
else: |
|
extended_attention_mask = attention_mask[:, None, None, :] |
|
else: |
|
raise ValueError( |
|
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( |
|
input_shape, attention_mask.shape |
|
) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
extended_attention_mask = extended_attention_mask.to( |
|
dtype=self.dtype |
|
) |
|
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 |
|
return extended_attention_mask |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
encoder_embeds=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_values=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
is_decoder=False, |
|
mode="multi_modal", |
|
normalize_attention=True, |
|
): |
|
r""" |
|
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if |
|
the model is configured as a decoder. |
|
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): |
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in |
|
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: |
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` |
|
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` |
|
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. |
|
use_cache (:obj:`bool`, `optional`): |
|
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up |
|
decoding (see :obj:`past_key_values`). |
|
""" |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if is_decoder: |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
else: |
|
use_cache = False |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
batch_size, seq_length = input_shape |
|
device = input_ids.device |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
batch_size, seq_length = input_shape |
|
device = inputs_embeds.device |
|
elif encoder_embeds is not None: |
|
input_shape = encoder_embeds.size()[:-1] |
|
batch_size, seq_length = input_shape |
|
device = encoder_embeds.device |
|
else: |
|
raise ValueError( |
|
"You have to specify either input_ids or inputs_embeds or encoder_embeds" |
|
) |
|
|
|
|
|
past_key_values_length = ( |
|
past_key_values[0][0].shape[2] if past_key_values is not None else 0 |
|
) |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones( |
|
((batch_size, seq_length + past_key_values_length)), device=device |
|
) |
|
if token_type_ids is None: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) |
|
|
|
|
|
|
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( |
|
attention_mask, input_shape, device, is_decoder |
|
) |
|
|
|
|
|
|
|
if encoder_hidden_states is not None: |
|
if type(encoder_hidden_states) == list: |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[ |
|
0 |
|
].size() |
|
else: |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
|
|
if type(encoder_attention_mask) == list: |
|
encoder_extended_attention_mask = [ |
|
self.invert_attention_mask(mask) for mask in encoder_attention_mask |
|
] |
|
elif encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) |
|
encoder_extended_attention_mask = self.invert_attention_mask( |
|
encoder_attention_mask |
|
) |
|
else: |
|
encoder_extended_attention_mask = self.invert_attention_mask( |
|
encoder_attention_mask |
|
) |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
if encoder_embeds is None: |
|
embedding_output = self.embeddings( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
token_type_ids=token_type_ids, |
|
inputs_embeds=inputs_embeds, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
else: |
|
embedding_output = encoder_embeds |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
attention_mask=extended_attention_mask, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
mode=mode, |
|
normalize_attention=normalize_attention, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None |
|
|
|
if not return_dict: |
|
return (sequence_output, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPoolingAndCrossAttentions( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
past_key_values=encoder_outputs.past_key_values, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
cross_attentions=encoder_outputs.cross_attentions, |
|
) |
|
|
|
|
|
@dataclass |
|
class MaskedLMOutputWithDistill(MaskedLMOutput): |
|
loss_aux: Optional[torch.FloatTensor] = None |
|
loss_distill: Optional[torch.FloatTensor] = None |
|
|
|
|
|
class BertForMaskedLM(BertPreTrainedModel): |
|
|
|
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.bert = BertModel(config, add_pooling_layer=False) |
|
self.cls = BertOnlyMLMHead(config) |
|
|
|
self.init_weights() |
|
|
|
def tie_aux_decoder_weights(self, module, aux_modules): |
|
"""Tie decoder weights of all `aux_modules` to `module`, (not bias)""" |
|
for m in aux_modules: |
|
m.predictions.decoder.weight = module.predictions.decoder.weight |
|
|
|
def get_output_embeddings(self): |
|
return self.cls.predictions.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.cls.predictions.decoder = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
encoder_embeds=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
is_decoder=False, |
|
mode="multi_modal", |
|
normalize_attention=True, |
|
soft_labels=None, |
|
alpha=0, |
|
return_logits=False, |
|
): |
|
r""" |
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): |
|
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., |
|
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored |
|
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` |
|
""" |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_embeds=encoder_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
is_decoder=is_decoder, |
|
mode=mode, |
|
normalize_attention=normalize_attention, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
prediction_scores = self.cls(sequence_output) |
|
|
|
if return_logits: |
|
return prediction_scores |
|
|
|
masked_lm_loss = None |
|
masked_lm_loss_aux = 0.0 |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
masked_lm_loss = loss_fct( |
|
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1) |
|
) |
|
|
|
if soft_labels is not None: |
|
loss_distill = -torch.sum( |
|
F.log_softmax(prediction_scores, dim=1) * soft_labels, dim=-1 |
|
) |
|
loss_distill = loss_distill[labels != -100].mean() |
|
masked_lm_loss = (1 - alpha) * masked_lm_loss + alpha * loss_distill |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output |
|
|
|
|
|
return MaskedLMOutputWithDistill( |
|
loss=masked_lm_loss, |
|
loss_aux=masked_lm_loss_aux, |
|
logits=prediction_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): |
|
input_shape = input_ids.shape |
|
effective_batch_size = input_shape[0] |
|
|
|
|
|
assert ( |
|
self.config.pad_token_id is not None |
|
), "The PAD token should be defined for generation" |
|
attention_mask = torch.cat( |
|
[attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1 |
|
) |
|
dummy_token = torch.full( |
|
(effective_batch_size, 1), |
|
self.config.pad_token_id, |
|
dtype=torch.long, |
|
device=input_ids.device, |
|
) |
|
input_ids = torch.cat([input_ids, dummy_token], dim=1) |
|
|
|
return {"input_ids": input_ids, "attention_mask": attention_mask} |
|
|
|
|
|
def build_bert(model_config, pretrain, checkpoint, encoder_width=None): |
|
"""build text encoder. |
|
|
|
Args: |
|
model_config (dict): model config. |
|
pretrain (bool): Whether to do pretrain or finetuning. |
|
checkpoint (bool): whether to do gradient_checkpointing. |
|
|
|
Returns: TODO |
|
|
|
""" |
|
bert_config = BertConfig.from_json_file(model_config.text_encoder.config) |
|
if encoder_width is None: |
|
bert_config.encoder_width = model_config.vision_encoder.d_model |
|
else: |
|
bert_config.encoder_width = encoder_width |
|
|
|
bert_config.gradient_checkpointing = checkpoint |
|
bert_config.fusion_layer = model_config.text_encoder.fusion_layer |
|
|
|
if not model_config.multimodal.enable: |
|
bert_config.fusion_layer = bert_config.num_hidden_layers |
|
|
|
if pretrain: |
|
try: |
|
text_encoder, loading_info = BertForMaskedLM.from_pretrained( |
|
model_config.text_encoder.pretrained, |
|
config=bert_config, |
|
output_loading_info=True, |
|
local_files_only=True |
|
) |
|
except: |
|
text_encoder, loading_info = BertForMaskedLM.from_pretrained( |
|
model_config.text_encoder.pretrained, |
|
config=bert_config, |
|
output_loading_info=True, |
|
local_files_only=False |
|
) |
|
else: |
|
try: |
|
text_encoder, loading_info = BertModel.from_pretrained( |
|
model_config.text_encoder.pretrained, |
|
config=bert_config, |
|
add_pooling_layer=False, |
|
output_loading_info=True, |
|
local_files_only=True |
|
) |
|
except: |
|
text_encoder, loading_info = BertModel.from_pretrained( |
|
model_config.text_encoder.pretrained, |
|
config=bert_config, |
|
add_pooling_layer=False, |
|
output_loading_info=True, |
|
local_files_only=False |
|
) |
|
|
|
return text_encoder |
|
|
|
|
|
def get_sim( |
|
vision_proj: torch.Tensor, |
|
text_proj: torch.Tensor, |
|
temp=1.0, |
|
agg_method="mean", |
|
): |
|
"""calculate pair-wise video-text similarity. |
|
|
|
Args: |
|
vision_proj (torch.Tensor): The vision representation. Shape: [B,T,C]. |
|
text_proj (torch.Tensor): The text representation. Shape: [B,C]. |
|
temp (torch.Tensor): The temperature. Shape: []. |
|
|
|
Returns: The similarity between video and text. Shape: [B,B]. |
|
|
|
""" |
|
vision_proj = F.normalize(vision_proj, dim=-1) |
|
text_proj = F.normalize(text_proj, dim=-1) |
|
if vision_proj.ndim == 3: |
|
sim_v2t = torch.einsum("mld,nd->mln", vision_proj, text_proj) / temp |
|
sim_t2v = torch.einsum("nd,mld->nlm", text_proj, vision_proj) / temp |
|
if agg_method == "mean": |
|
sim_v2t = sim_v2t.mean(1) |
|
sim_t2v = sim_t2v.mean(1) |
|
elif agg_method == "max": |
|
sim_v2t = sim_v2t.max(1)[0] |
|
sim_t2v = sim_t2v.max(1)[0] |
|
elif text_proj.ndim == 3: |
|
sim_v2t = torch.einsum("nd,mld->nlm", vision_proj, text_proj) / temp |
|
sim_t2v = torch.einsum("nld,md->nlm", text_proj, vision_proj) / temp |
|
if agg_method == "mean": |
|
sim_v2t = sim_v2t.mean(1) |
|
sim_t2v = sim_t2v.mean(1) |
|
elif agg_method == "max": |
|
sim_v2t = sim_v2t.max(1)[0] |
|
sim_t2v = sim_t2v.max(1)[0] |
|
else: |
|
sim_v2t = vision_proj @ text_proj.T / temp |
|
sim_t2v = sim_v2t.T |
|
|
|
return sim_v2t, sim_t2v |
|
|
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} |
|
|
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"vocab_file": { |
|
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt", |
|
"bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt", |
|
"bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt", |
|
"bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt", |
|
"bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt", |
|
"bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt", |
|
"bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt", |
|
"bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt", |
|
"bert-large-uncased-whole-word-masking": "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt", |
|
"bert-large-cased-whole-word-masking": "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt", |
|
"bert-large-uncased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt", |
|
"bert-large-cased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt", |
|
"bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt", |
|
"bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt", |
|
"bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt", |
|
"TurkuNLP/bert-base-finnish-cased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt", |
|
"TurkuNLP/bert-base-finnish-uncased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt", |
|
"wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt", |
|
} |
|
} |
|
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { |
|
"bert-base-uncased": 512, |
|
"bert-large-uncased": 512, |
|
"bert-base-cased": 512, |
|
"bert-large-cased": 512, |
|
"bert-base-multilingual-uncased": 512, |
|
"bert-base-multilingual-cased": 512, |
|
"bert-base-chinese": 512, |
|
"bert-base-german-cased": 512, |
|
"bert-large-uncased-whole-word-masking": 512, |
|
"bert-large-cased-whole-word-masking": 512, |
|
"bert-large-uncased-whole-word-masking-finetuned-squad": 512, |
|
"bert-large-cased-whole-word-masking-finetuned-squad": 512, |
|
"bert-base-cased-finetuned-mrpc": 512, |
|
"bert-base-german-dbmdz-cased": 512, |
|
"bert-base-german-dbmdz-uncased": 512, |
|
"TurkuNLP/bert-base-finnish-cased-v1": 512, |
|
"TurkuNLP/bert-base-finnish-uncased-v1": 512, |
|
"wietsedv/bert-base-dutch-cased": 512, |
|
} |
|
|
|
PRETRAINED_INIT_CONFIGURATION = { |
|
"bert-base-uncased": {"do_lower_case": True}, |
|
"bert-large-uncased": {"do_lower_case": True}, |
|
"bert-base-cased": {"do_lower_case": False}, |
|
"bert-large-cased": {"do_lower_case": False}, |
|
"bert-base-multilingual-uncased": {"do_lower_case": True}, |
|
"bert-base-multilingual-cased": {"do_lower_case": False}, |
|
"bert-base-chinese": {"do_lower_case": False}, |
|
"bert-base-german-cased": {"do_lower_case": False}, |
|
"bert-large-uncased-whole-word-masking": {"do_lower_case": True}, |
|
"bert-large-cased-whole-word-masking": {"do_lower_case": False}, |
|
"bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True}, |
|
"bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False}, |
|
"bert-base-cased-finetuned-mrpc": {"do_lower_case": False}, |
|
"bert-base-german-dbmdz-cased": {"do_lower_case": False}, |
|
"bert-base-german-dbmdz-uncased": {"do_lower_case": True}, |
|
"TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False}, |
|
"TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True}, |
|
"wietsedv/bert-base-dutch-cased": {"do_lower_case": False}, |
|
} |
|
|
|
|
|
import collections |
|
import unicodedata |
|
from transformers.tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace |
|
|
|
def load_vocab(vocab_file): |
|
"""Loads a vocabulary file into a dictionary.""" |
|
vocab = collections.OrderedDict() |
|
with open(vocab_file, "r", encoding="utf-8") as reader: |
|
tokens = reader.readlines() |
|
for index, token in enumerate(tokens): |
|
token = token.rstrip("\n") |
|
vocab[token] = index |
|
return vocab |
|
|
|
|
|
def whitespace_tokenize(text): |
|
"""Runs basic whitespace cleaning and splitting on a piece of text.""" |
|
text = text.strip() |
|
if not text: |
|
return [] |
|
tokens = text.split() |
|
return tokens |
|
|
|
|
|
class BasicTokenizer(object): |
|
""" |
|
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). |
|
Args: |
|
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`): |
|
Whether or not to lowercase the input when tokenizing. |
|
never_split (:obj:`Iterable`, `optional`): |
|
Collection of tokens which will never be split during tokenization. Only has an effect when |
|
:obj:`do_basic_tokenize=True` |
|
tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`): |
|
Whether or not to tokenize Chinese characters. |
|
This should likely be deactivated for Japanese (see this `issue |
|
<https://github.com/huggingface/transformers/issues/328>`__). |
|
strip_accents: (:obj:`bool`, `optional`): |
|
Whether or not to strip all accents. If this option is not specified, then it will be determined by the |
|
value for :obj:`lowercase` (as in the original BERT). |
|
""" |
|
|
|
def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None): |
|
if never_split is None: |
|
never_split = [] |
|
self.do_lower_case = do_lower_case |
|
self.never_split = set(never_split) |
|
self.tokenize_chinese_chars = tokenize_chinese_chars |
|
self.strip_accents = strip_accents |
|
|
|
def tokenize(self, text, never_split=None): |
|
""" |
|
Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see |
|
WordPieceTokenizer. |
|
Args: |
|
**never_split**: (`optional`) list of str |
|
Kept for backward compatibility purposes. Now implemented directly at the base class level (see |
|
:func:`PreTrainedTokenizer.tokenize`) List of token not to split. |
|
""" |
|
|
|
never_split = self.never_split.union( |
|
set(never_split)) if never_split else self.never_split |
|
text = self._clean_text(text) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.tokenize_chinese_chars: |
|
text = self._tokenize_chinese_chars(text) |
|
orig_tokens = whitespace_tokenize(text) |
|
split_tokens = [] |
|
for token in orig_tokens: |
|
if token not in never_split: |
|
if self.do_lower_case: |
|
token = token.lower() |
|
if self.strip_accents is not False: |
|
token = self._run_strip_accents(token) |
|
elif self.strip_accents: |
|
token = self._run_strip_accents(token) |
|
split_tokens.extend(self._run_split_on_punc(token, never_split)) |
|
|
|
output_tokens = whitespace_tokenize(" ".join(split_tokens)) |
|
return output_tokens |
|
|
|
def _run_strip_accents(self, text): |
|
"""Strips accents from a piece of text.""" |
|
text = unicodedata.normalize("NFD", text) |
|
output = [] |
|
for char in text: |
|
cat = unicodedata.category(char) |
|
if cat == "Mn": |
|
continue |
|
output.append(char) |
|
return "".join(output) |
|
|
|
def _run_split_on_punc(self, text, never_split=None): |
|
"""Splits punctuation on a piece of text.""" |
|
if never_split is not None and text in never_split: |
|
return [text] |
|
chars = list(text) |
|
i = 0 |
|
start_new_word = True |
|
output = [] |
|
while i < len(chars): |
|
char = chars[i] |
|
if _is_punctuation(char): |
|
output.append([char]) |
|
start_new_word = True |
|
else: |
|
if start_new_word: |
|
output.append([]) |
|
start_new_word = False |
|
output[-1].append(char) |
|
i += 1 |
|
|
|
return ["".join(x) for x in output] |
|
|
|
def _tokenize_chinese_chars(self, text): |
|
"""Adds whitespace around any CJK character.""" |
|
output = [] |
|
for char in text: |
|
cp = ord(char) |
|
if self._is_chinese_char(cp): |
|
output.append(" ") |
|
output.append(char) |
|
output.append(" ") |
|
else: |
|
output.append(char) |
|
return "".join(output) |
|
|
|
def _is_chinese_char(self, cp): |
|
"""Checks whether CP is the codepoint of a CJK character.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if ( |
|
(cp >= 0x4E00 and cp <= 0x9FFF) |
|
or (cp >= 0x3400 and cp <= 0x4DBF) |
|
or (cp >= 0x20000 and cp <= 0x2A6DF) |
|
or (cp >= 0x2A700 and cp <= 0x2B73F) |
|
or (cp >= 0x2B740 and cp <= 0x2B81F) |
|
or (cp >= 0x2B820 and cp <= 0x2CEAF) |
|
or (cp >= 0xF900 and cp <= 0xFAFF) |
|
or (cp >= 0x2F800 and cp <= 0x2FA1F) |
|
): |
|
return True |
|
|
|
return False |
|
|
|
def _clean_text(self, text): |
|
"""Performs invalid character removal and whitespace cleanup on text.""" |
|
output = [] |
|
for char in text: |
|
cp = ord(char) |
|
if cp == 0 or cp == 0xFFFD or _is_control(char): |
|
continue |
|
if _is_whitespace(char): |
|
output.append(" ") |
|
else: |
|
output.append(char) |
|
return "".join(output) |
|
|
|
|
|
class WordpieceTokenizer(object): |
|
"""Runs WordPiece tokenization.""" |
|
|
|
def __init__(self, vocab, unk_token, max_input_chars_per_word=100): |
|
self.vocab = vocab |
|
self.unk_token = unk_token |
|
self.max_input_chars_per_word = max_input_chars_per_word |
|
|
|
def tokenize(self, text): |
|
""" |
|
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform |
|
tokenization using the given vocabulary. |
|
For example, :obj:`input = "unaffable"` wil return as output :obj:`["un", "##aff", "##able"]`. |
|
Args: |
|
text: A single token or whitespace separated tokens. This should have |
|
already been passed through `BasicTokenizer`. |
|
Returns: |
|
A list of wordpiece tokens. |
|
""" |
|
|
|
output_tokens = [] |
|
for token in whitespace_tokenize(text): |
|
chars = list(token) |
|
if len(chars) > self.max_input_chars_per_word: |
|
output_tokens.append(self.unk_token) |
|
continue |
|
|
|
is_bad = False |
|
start = 0 |
|
sub_tokens = [] |
|
while start < len(chars): |
|
end = len(chars) |
|
cur_substr = None |
|
while start < end: |
|
substr = "".join(chars[start:end]) |
|
if start > 0: |
|
substr = "##" + substr |
|
if substr in self.vocab: |
|
cur_substr = substr |
|
break |
|
end -= 1 |
|
if cur_substr is None: |
|
is_bad = True |
|
break |
|
sub_tokens.append(cur_substr) |
|
start = end |
|
|
|
if is_bad: |
|
output_tokens.append(self.unk_token) |
|
else: |
|
output_tokens.extend(sub_tokens) |
|
return output_tokens |
|
|
|
|
|
class BertTokenizer(PreTrainedTokenizer): |
|
r""" |
|
Construct a BERT tokenizer. Based on WordPiece. |
|
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods. |
|
Users should refer to this superclass for more information regarding those methods. |
|
Args: |
|
vocab_file (:obj:`str`): |
|
File containing the vocabulary. |
|
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`): |
|
Whether or not to lowercase the input when tokenizing. |
|
do_basic_tokenize (:obj:`bool`, `optional`, defaults to :obj:`True`): |
|
Whether or not to do basic tokenization before WordPiece. |
|
never_split (:obj:`Iterable`, `optional`): |
|
Collection of tokens which will never be split during tokenization. Only has an effect when |
|
:obj:`do_basic_tokenize=True` |
|
unk_token (:obj:`str`, `optional`, defaults to :obj:`"[UNK]"`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. |
|
sep_token (:obj:`str`, `optional`, defaults to :obj:`"[SEP]"`): |
|
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for |
|
sequence classification or for a text and a question for question answering. It is also used as the last |
|
token of a sequence built with special tokens. |
|
pad_token (:obj:`str`, `optional`, defaults to :obj:`"[PAD]"`): |
|
The token used for padding, for example when batching sequences of different lengths. |
|
cls_token (:obj:`str`, `optional`, defaults to :obj:`"[CLS]"`): |
|
The classifier token which is used when doing sequence classification (classification of the whole sequence |
|
instead of per-token classification). It is the first token of the sequence when built with special tokens. |
|
mask_token (:obj:`str`, `optional`, defaults to :obj:`"[MASK]"`): |
|
The token used for masking values. This is the token used when training this model with masked language |
|
modeling. This is the token which the model will try to predict. |
|
tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`): |
|
Whether or not to tokenize Chinese characters. |
|
This should likely be deactivated for Japanese (see this `issue |
|
<https://github.com/huggingface/transformers/issues/328>`__). |
|
strip_accents: (:obj:`bool`, `optional`): |
|
Whether or not to strip all accents. If this option is not specified, then it will be determined by the |
|
value for :obj:`lowercase` (as in the original BERT). |
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION |
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES |
|
|
|
def __init__( |
|
self, |
|
vocab_file, |
|
do_lower_case=True, |
|
do_basic_tokenize=True, |
|
never_split=None, |
|
unk_token="[UNK]", |
|
sep_token="[SEP]", |
|
pad_token="[PAD]", |
|
cls_token="[CLS]", |
|
mask_token="[MASK]", |
|
tokenize_chinese_chars=True, |
|
strip_accents=None, |
|
**kwargs |
|
): |
|
if not os.path.isfile(vocab_file): |
|
raise ValueError( |
|
"Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained " |
|
"model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format( |
|
vocab_file) |
|
) |
|
self.vocab = load_vocab(vocab_file) |
|
|
|
super().__init__( |
|
do_lower_case=do_lower_case, |
|
do_basic_tokenize=do_basic_tokenize, |
|
never_split=never_split, |
|
unk_token=unk_token, |
|
sep_token=sep_token, |
|
pad_token=pad_token, |
|
cls_token=cls_token, |
|
mask_token=mask_token, |
|
tokenize_chinese_chars=tokenize_chinese_chars, |
|
strip_accents=strip_accents, |
|
**kwargs, |
|
) |
|
|
|
self.ids_to_tokens = collections.OrderedDict( |
|
[(ids, tok) for tok, ids in self.vocab.items()]) |
|
self.do_basic_tokenize = do_basic_tokenize |
|
if do_basic_tokenize: |
|
self.basic_tokenizer = BasicTokenizer( |
|
do_lower_case=do_lower_case, |
|
never_split=never_split, |
|
tokenize_chinese_chars=tokenize_chinese_chars, |
|
strip_accents=strip_accents, |
|
) |
|
self.wordpiece_tokenizer = WordpieceTokenizer( |
|
vocab=self.vocab, unk_token=self.unk_token) |
|
|
|
@property |
|
def do_lower_case(self): |
|
return self.basic_tokenizer.do_lower_case |
|
|
|
@property |
|
def vocab_size(self): |
|
return len(self.vocab) |
|
|
|
def get_vocab(self): |
|
return dict(self.vocab, **self.added_tokens_encoder) |
|
|
|
def _tokenize(self, text): |
|
split_tokens = [] |
|
if self.do_basic_tokenize: |
|
for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens): |
|
|
|
|
|
if token in self.basic_tokenizer.never_split: |
|
split_tokens.append(token) |
|
else: |
|
split_tokens += self.wordpiece_tokenizer.tokenize(token) |
|
else: |
|
split_tokens = self.wordpiece_tokenizer.tokenize(text) |
|
return split_tokens |
|
|
|
def _convert_token_to_id(self, token): |
|
""" Converts a token (str) in an id using the vocab. """ |
|
return self.vocab.get(token, self.vocab.get(self.unk_token)) |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
return self.ids_to_tokens.get(index, self.unk_token) |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
""" Converts a sequence of tokens (string) in a single string. """ |
|
out_string = " ".join(tokens).replace(" ##", "").strip() |
|
return out_string |
|
|
|
def build_inputs_with_special_tokens( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and |
|
adding special tokens. A BERT sequence has the following format: |
|
- single sequence: ``[CLS] X `` |
|
- pair of sequences: ``[CLS] A [SEP] B [SEP]`` |
|
Args: |
|
token_ids_0 (:obj:`List[int]`): |
|
List of IDs to which the special tokens will be added. |
|
token_ids_1 (:obj:`List[int]`, `optional`): |
|
Optional second list of IDs for sequence pairs. |
|
Returns: |
|
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. |
|
""" |
|
if token_ids_1 is None: |
|
return [self.cls_token_id] + token_ids_0 |
|
cls = [self.cls_token_id] |
|
sep = [self.sep_token_id] |
|
return cls + token_ids_0 + sep + token_ids_1 + sep |
|
|
|
def get_special_tokens_mask( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False |
|
) -> List[int]: |
|
""" |
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding |
|
special tokens using the tokenizer ``prepare_for_model`` method. |
|
Args: |
|
token_ids_0 (:obj:`List[int]`): |
|
List of IDs. |
|
token_ids_1 (:obj:`List[int]`, `optional`): |
|
Optional second list of IDs for sequence pairs. |
|
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): |
|
Whether or not the token list is already formatted with special tokens for the model. |
|
Returns: |
|
:obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
|
""" |
|
|
|
if already_has_special_tokens: |
|
if token_ids_1 is not None: |
|
raise ValueError( |
|
"You should not supply a second sequence if the provided sequence of " |
|
"ids is already formatted with special tokens for the model." |
|
) |
|
return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0)) |
|
|
|
if token_ids_1 is not None: |
|
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] |
|
return [1] + ([0] * len(token_ids_0)) + [1] |
|
|
|
def create_token_type_ids_from_sequences( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence |
|
pair mask has the following format: |
|
:: |
|
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 |
|
| first sequence | second sequence | |
|
If :obj:`token_ids_1` is :obj:`None`, this method only returns the first portion of the mask (0s). |
|
Args: |
|
token_ids_0 (:obj:`List[int]`): |
|
List of IDs. |
|
token_ids_1 (:obj:`List[int]`, `optional`): |
|
Optional second list of IDs for sequence pairs. |
|
Returns: |
|
:obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given |
|
sequence(s). |
|
""" |
|
sep = [self.sep_token_id] |
|
cls = [self.cls_token_id] |
|
if token_ids_1 is None: |
|
return len(cls + token_ids_0 + sep) * [0] |
|
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
index = 0 |
|
if os.path.isdir(save_directory): |
|
vocab_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + |
|
VOCAB_FILES_NAMES["vocab_file"] |
|
) |
|
else: |
|
vocab_file = (filename_prefix + |
|
"-" if filename_prefix else "") + save_directory |
|
with open(vocab_file, "w", encoding="utf-8") as writer: |
|
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): |
|
if index != token_index: |
|
print( |
|
"Saving vocabulary to {}: vocabulary indices are not consecutive." |
|
" Please check that the vocabulary is not corrupted!".format( |
|
vocab_file) |
|
) |
|
index = token_index |
|
writer.write(token + "\n") |
|
index += 1 |
|
return (vocab_file,) |
|
|
|
|
|
from huggingface_hub import PyTorchModelHubMixin |
|
|
|
|
|
def _frame_from_video(video): |
|
while video.isOpened(): |
|
success, frame = video.read() |
|
if success: |
|
yield frame |
|
else: |
|
break |
|
|
|
v_mean = np.array([0.485, 0.456, 0.406]).reshape(1,1,3) |
|
v_std = np.array([0.229, 0.224, 0.225]).reshape(1,1,3) |
|
def normalize(data): |
|
return (data/255.0-v_mean)/v_std |
|
|
|
|
|
def frames2tensor(vid_list, fnum=8, target_size=(224, 224), device=torch.device('cuda')): |
|
assert(len(vid_list) >= fnum) |
|
step = len(vid_list) // fnum |
|
vid_list = vid_list[::step][:fnum] |
|
vid_list = [cv2.resize(x[:,:,::-1], target_size) for x in vid_list] |
|
vid_tube = [np.expand_dims(normalize(x), axis=(0, 1)) for x in vid_list] |
|
vid_tube = np.concatenate(vid_tube, axis=1) |
|
vid_tube = np.transpose(vid_tube, (0, 1, 4, 2, 3)) |
|
vid_tube = torch.from_numpy(vid_tube).to(device, non_blocking=True).float() |
|
return vid_tube |
|
|
|
def vid2tensor(path: str, fnum: int=8, target_size: tuple=(224, 224), device=torch.device('cuda')): |
|
video = cv2.VideoCapture(path) |
|
frames = [x for x in _frame_from_video(video)] |
|
return frames2tensor(frames, fnum, target_size, device) |
|
|
|
def get_text_feat_dict(texts, clip, text_feat_d={}): |
|
for t in texts: |
|
feat = clip.get_txt_feat(t) |
|
text_feat_d[t] = feat |
|
return text_feat_d |
|
|
|
def get_vid_feat(frames, vlm): |
|
return vlm.get_vid_features(frames) |
|
|
|
|
|
def retrieve_text(frames, |
|
texts, |
|
model, |
|
topk:int=5, |
|
device=torch.device('cuda')): |
|
|
|
vlm = model.to(device) |
|
config = vlm.config |
|
|
|
fn = config.num_frames |
|
size_t = config.size_t |
|
frames_tensor = frames2tensor(frames, fnum=fn, target_size=(size_t, size_t), device=device) |
|
vid_feat = vlm.get_vid_feat(frames_tensor) |
|
|
|
text_feat_d = {} |
|
text_feat_d = get_text_feat_dict(texts, vlm, text_feat_d) |
|
text_feats = [text_feat_d[t] for t in texts] |
|
text_feats_tensor = torch.cat(text_feats, 0) |
|
|
|
probs, idxs = vlm.predict_label(vid_feat, text_feats_tensor, top=topk) |
|
|
|
ret_texts = [texts[i] for i in idxs.long().numpy()[0].tolist()] |
|
return ret_texts, probs.float().numpy()[0] |
|
|
|
|
|
def setup_internvideo2(config): |
|
|
|
model = InternVideo2_Stage2(config=config, is_pretrain=True) |
|
|
|
torch.set_float32_matmul_precision('high') |
|
model = torch.compile(model) |
|
|
|
model = model.to(torch.device(config.device)) |
|
model_without_ddp = model |
|
|
|
if (config.pretrained_path.strip() and (os.path.isfile(config.pretrained_path)) or "s3://" in config.pretrained_path): |
|
checkpoint = torch.load(config.pretrained_path, map_location="cpu") |
|
try: |
|
if "model" in checkpoint.keys(): |
|
state_dict = checkpoint["model"] |
|
else: |
|
state_dict = checkpoint["module"] |
|
except: |
|
state_dict = checkpoint |
|
|
|
|
|
a = len(state_dict) |
|
interpolate_pos_embed_internvideo2_new(state_dict, model_without_ddp.vision_encoder, orig_t_size=config.origin_num_frames) |
|
assert a == len(state_dict), state_dict.keys() |
|
|
|
msg = model_without_ddp.load_state_dict(state_dict, strict=False) |
|
|
|
model_without_ddp = model_without_ddp.to(torch.float32) |
|
|
|
return model_without_ddp.eval() |
|
|
|
|
|
class DictToClass: |
|
def __init__(self, data): |
|
for key, value in data.items(): |
|
key = str(key) |
|
if isinstance(value, dict): |
|
setattr(self, key, DictToClass(value)) |
|
elif isinstance(value, list): |
|
setattr(self, key, [ |
|
DictToClass(item) if isinstance(item, dict) else item |
|
for item in value |
|
]) |
|
else: |
|
setattr(self, key, value) |
|
|
|
def __repr__(self): |
|
"""方便调试的对象表示""" |
|
attrs = ', '.join(f"{k}={v!r}" for k, v in self.__dict__.items()) |
|
return f"{self.__class__.__name__}({attrs})" |
|
|
|
|
|
def instance2dict(obj): |
|
"""将类实例及其嵌套属性转换为字典""" |
|
if isinstance(obj, (str, int, float, bool, type(None))): |
|
|
|
return obj |
|
elif isinstance(obj, dict): |
|
|
|
return {k: instance2dict(v) for k, v in obj.items()} |
|
elif isinstance(obj, (list, tuple, set)): |
|
|
|
return type(obj)(instance2dict(item) for item in obj) |
|
elif hasattr(obj, '__dict__'): |
|
|
|
result = {} |
|
for key, value in obj.__dict__.items(): |
|
|
|
if not key.startswith('_'): |
|
result[key] = instance2dict(value) |
|
return result |
|
else: |
|
|
|
return str(obj) |
|
|
|
|
|
class InternVideo2_Stage2_Config(PretrainedConfig): |
|
_auto_class='AutoConfig' |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
|
|
class InternVideo2_Stage2( |
|
PreTrainedModel, |
|
): |
|
"""docstring for InternVideo2_Stage2""" |
|
|
|
_auto_class="AutoModel" |
|
config_class=InternVideo2_Stage2_Config |
|
|
|
def __init__(self, |
|
config: InternVideo2_Stage2_Config, |
|
is_pretrain: bool=True): |
|
|
|
super(InternVideo2_Stage2, self).__init__(config) |
|
|
|
config = config.to_dict() |
|
self._config = DictToClass(config) if isinstance(config, dict) else config |
|
|
|
self.tokenizer = BertTokenizer.from_pretrained(self._config.model.text_encoder.pretrained, local_files_only=True, use_safetensors=True) |
|
|
|
self.is_pretrain = is_pretrain |
|
self.vision_width = self._config.model.vision_encoder.clip_embed_dim |
|
self.text_width = self._config.model.text_encoder.d_model |
|
self.embed_dim = self._config.model.embed_dim |
|
|
|
|
|
self.vision_encoder = self.build_vision_encoder() |
|
self.text_encoder = self.build_text_encoder() |
|
|
|
self.vision_proj = nn.Linear(self.vision_width, self.embed_dim) |
|
self.text_proj = nn.Linear(self.text_width, self.embed_dim) |
|
|
|
def freeze_vision(self): |
|
"""freeze vision encoder""" |
|
for p in self.vision_encoder.parameters(): |
|
p.requires_grad = False |
|
|
|
def freeze_text(self): |
|
"""freeze text encoder""" |
|
for p in self.text_encoder.parameters(): |
|
p.requires_grad = False |
|
|
|
@property |
|
def dtype(self): |
|
return self.vision_encoder.patch_embed.proj.weight.dtype |
|
|
|
def encode_vision(self, |
|
image: torch.Tensor, |
|
test: bool=False): |
|
"""encode image / videos as features. |
|
|
|
Args: |
|
image (torch.Tensor): The input images. |
|
test (bool): Whether testing. |
|
|
|
Returns: tuple. |
|
- vision_embeds (torch.Tensor): The output features. Shape: [B,N,C]. |
|
- pooled_vision_embeds (torch.Tensor): The pooled output features. Shape: [B,1,C]. |
|
- student_output (torch.Tensor): The features of alignment. Shape: [K,B,N,C]. |
|
- clip_output (torch.Tensor): The features of clip. Shape: [K,B,N,C]. |
|
|
|
""" |
|
|
|
T = image.shape[1] |
|
use_image = True if T == 1 else False |
|
image = image.permute(0, 2, 1, 3, 4).to(self.dtype) |
|
|
|
|
|
if test: |
|
vision_embeds, pooled_vision_embeds, _, _ = self.vision_encoder( |
|
image, None, use_image) |
|
return vision_embeds, pooled_vision_embeds |
|
else: |
|
mask, targets_clip_middle_vis, targets_clip_final_vis = self.encode_teacher(image) |
|
|
|
|
|
|
|
vision_embeds, pooled_vision_embeds, student_output, student_output_final = self.vision_encoder( |
|
image, mask, use_image) |
|
return vision_embeds, pooled_vision_embeds, student_output, student_output_final, targets_clip_middle_vis, targets_clip_final_vis |
|
|
|
def encode_text(self, |
|
text: dict): |
|
"""encode text. |
|
Args: |
|
text (dict): The output of huggingface's `PreTrainedTokenizer`. contains keys: |
|
- input_ids (torch.Tensor): Token ids to be fed to a model. Shape: [B,L]. |
|
- attention_mask (torch.Tensor): The mask indicate padded tokens. Shape: [B,L]. 0 is padded token. |
|
- other keys refer to "https://huggingface.co/docs/transformers/v4.21.2/en/main_classes/tokenizer#transformers.PreTrainedTokenizer.__call__". |
|
Returns: tuple. |
|
- text_embeds (torch.Tensor): The features of all tokens. Shape: [B,L,C]. |
|
- pooled_text_embeds (torch.Tensor): The pooled features. Shape: [B,C]. |
|
|
|
""" |
|
text_output = self.get_text_encoder()( |
|
text.input_ids, |
|
attention_mask=text.attention_mask, |
|
return_dict=True, |
|
mode="text", |
|
) |
|
text_embeds = text_output.last_hidden_state |
|
pooled_text_embeds = text_embeds[:, 0] |
|
return text_embeds, pooled_text_embeds |
|
|
|
def build_vision_encoder(self): |
|
"""build vision encoder |
|
Returns: (vision_encoder, clip_teacher). Each is a `nn.Module`. |
|
|
|
""" |
|
encoder_name = self._config.model.vision_encoder.name |
|
|
|
if encoder_name == 'pretrain_internvideo2_1b_patch14_224': |
|
vision_encoder = pretrain_internvideo2_1b_patch14_224(self._config.model) |
|
elif encoder_name == 'pretrain_internvideo2_6b_patch14_224': |
|
vision_encoder = pretrain_internvideo2_6b_patch14_224(self._config.model) |
|
else: |
|
raise ValueError(f"Not implemented: {encoder_name}") |
|
|
|
|
|
img_size = self._config.model.vision_encoder.img_size |
|
num_frames = self._config.model.vision_encoder.num_frames |
|
tublet_size = self._config.model.vision_encoder.tubelet_size |
|
patch_size = self._config.model.vision_encoder.patch_size |
|
self.clip_img_size = self._config.model.vision_encoder.clip_input_resolution |
|
self.video_mask_type = self._config.model.vision_encoder.video_mask_type |
|
self.video_window_size = (num_frames // tublet_size, img_size // patch_size, img_size // patch_size) |
|
self.video_mask_ratio = self._config.model.vision_encoder.video_mask_ratio |
|
self.image_mask_type = self._config.model.vision_encoder.image_mask_type |
|
self.image_window_size = (1, img_size // patch_size, img_size // patch_size) |
|
self.image_mask_ratio = self._config.model.vision_encoder.image_mask_ratio |
|
|
|
return vision_encoder |
|
|
|
def build_text_encoder(self): |
|
"""build text_encoder and possiblly video-to-text multimodal fusion encoder. |
|
Returns: nn.Module. The text encoder |
|
|
|
""" |
|
encoder_name = self._config.model.text_encoder.name |
|
|
|
if "bert" in encoder_name: |
|
text_encoder = build_bert( |
|
self._config.model, |
|
self.is_pretrain, |
|
self._config.gradient_checkpointing, |
|
) |
|
else: |
|
raise ValueError(f"Not implemented: {encoder_name}") |
|
|
|
return text_encoder |
|
|
|
def get_text_encoder(self): |
|
"""get text encoder, used for text and cross-modal encoding""" |
|
encoder = self.text_encoder |
|
return encoder.bert if hasattr(encoder, "bert") else encoder |
|
|
|
def get_vid_feat(self, |
|
frames: torch.Tensor): |
|
"""get the video features for the given frames. |
|
|
|
Args: |
|
frames (torch.Tensor): The input frames. Shape: [B,T,C,H,W]. |
|
|
|
Returns: tuple. |
|
- vision_embeds (torch.Tensor): The output features. Shape: [B,N,C]. |
|
- pooled_vision_embeds (torch.Tensor): The pooled output features. Shape: [B,1,C]. |
|
|
|
""" |
|
with torch.no_grad(): |
|
_, vfeat = self.encode_vision(frames, test=True) |
|
vfeat = self.vision_proj(vfeat) |
|
vfeat /= vfeat.norm(dim=-1, keepdim=True) |
|
return vfeat |
|
|
|
def get_txt_feat(self, |
|
text: str): |
|
"""get the text features for the given text.""" |
|
with torch.no_grad(): |
|
text = self.tokenizer( |
|
text, |
|
padding="max_length", |
|
truncation=True, |
|
max_length=self._config.max_txt_l, |
|
return_tensors="pt",).to(self._config.device) |
|
_, tfeat = self.encode_text(text) |
|
tfeat = self.text_proj(tfeat) |
|
tfeat /= tfeat.norm(dim=-1, keepdim=True) |
|
return tfeat |
|
|
|
def predict_label(self, |
|
vid_feat: torch.Tensor, |
|
txt_feat: torch.Tensor, |
|
top: int=5): |
|
label_probs = (100.0 * vid_feat @ txt_feat.T).softmax(dim=-1) |
|
top_probs, top_labels = label_probs.float().cpu().topk(top, dim=-1) |
|
return top_probs, top_labels |
|
|