Model Card for Model ID

This model is a Bits&Bytes 4 bits quantization of the https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct model.

The main advantages of this model are :

  • it runs on a GPU with 6GB of free ram. (So usually a user-grade gpu with 8 Gb VRAM, versus the standard model which needs 48+GB).
  • it is 2-3 times faster in inference time/token

The main drawback is that is less accurate than the full(original) model, although is up to you to decide if the compromise is a good fit for your use-case.

Model Details

Model Description

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.

Developed by: OpenLLM-Ro Language(s): Romanian License: cc-by-nc-4.0 Finetuned from model: Meta-Llama-3-8B-Instruct Trained using: RoAlpaca, RoAlpacaGPT4, RoDolly, RoSelfInstruct, RoNoRobots, RoOrca, RoCamel, RoOpenAssistant, RoUltraChat

Model Sources [optional]

Repository: https://github.com/OpenLLM-Ro/LLaMA-Factory Paper: https://arxiv.org/abs/2406.18266

ntended Use Intended Use Cases RoLlama3 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.

Out-of-Scope Use Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.

How to Get Started with the Model Use the code below to get started with the model.

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct") model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct")

instruction = "Ce jocuri de societate pot juca cu prietenii mei?" chat = [ {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."}, {"role": "user", "content": instruction}, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")

inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate(input_ids=inputs, max_new_tokens=128) print(tokenizer.decode(outputs[0]))

Academic Benchmarks

Model
Average
ARC
MMLU
Winogrande
Hellaswag
GSM8k
TruthfulQA
RoLlama-3-8B-Instruct-4Bit
NA
40.38
NA
NA
NA
NA
50.93
Llama-3-8B-Instruct
50.62
43.69
52.04
59.33
53.19
43.87
51.59
RoLlama3-8b-Instruct-2024-06-28
50.56
44.70
52.19
67.23
57.69
30.23
51.34
RoLlama3-8b-Instruct-2024-10-09
52.21
47.94
53.50
66.06
59.72
40.16
45.90
RoLlama3-8b-Instruct-DPO-2024-10-09
49.96
46.29
53.29
65.57
58.15
34.77
41.70

Downstream tasks

LaRoSeDa
WMT
Few-shot
Finetuned
Few-shot
Finetuned
Model
Binary
(Macro F1)
Multiclass
(Macro F1)
Binary
(Macro F1)
Multiclass
(Macro F1)
EN-RO
(Bleu)
RO-EN
(Bleu)
EN-RO
(Bleu)
RO-EN
(Bleu)
Llama-3-8B-Instruct
95.88
56.21
98.53
86.19
18.88
30.98
28.02
40.28
RoLlama3-8b-Instruct-2024-06-28
97.52
67.41
94.15
87.13
24.01
27.36
26.53
40.36
RoLlama3-8b-Instruct-2024-10-09
95.58
61.20
96.46
87.26
22.92
24.28
27.31
40.52
RoLlama3-8b-Instruct-DPO-2024-10-09
97.48
54.00
-
-
22.09
23.00
-
-
XQuAD
STS
Few-shot
Finetuned
Few-shot
Finetuned
Model
(EM)
(F1)
(EM)
(F1)
(Spearman)
(Pearson)
(Spearman)
(Pearson)
RoLlama-3-8B-Instruct-4Bit - F5 Scores
NA
NA
NA
NA
68.58
NA
70.57
NA
Llama-3-8B-Instruct
39.47
58.67
67.65
82.77
73.04
72.36
83.49
84.06
RoLlama3-8b-Instruct-2024-06-28
39.43
59.50
44.45
59.76
77.20
77.87
85.80
86.05
RoLlama3-8b-Instruct-2024-10-09
18.89
31.79
50.84
65.18
77.60
76.86
86.70
87.09
RoLlama3-8b-Instruct-DPO-2024-10-09
26.05
42.77
-
-
79.64
79.52
-
-

Hardware

Nvidia RTX 4090 16GB, Laptop Version

Software

[More Information Needed]

RoLlama3 Model Family

Model Link
RoLlama3-8b-Instruct-2024-06-28 link
RoLlama3-8b-Instruct-2024-10-09 link
RoLlama3-8b-Instruct-DPO-2024-10-09 link

Citation

@misc{masala2024vorbecstiromanecsterecipetrain,
      title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions}, 
      author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
      year={2024},
      eprint={2406.18266},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2406.18266}, 
}
Downloads last month
95
Safetensors
Model size
4.65B params
Tensor type
FP16
·
F32
·
U8
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.