Safetensors
Romanian
llama
Eval Results
mihaimasala's picture
Update README.md
4665074 verified
metadata
license: cc-by-nc-4.0
language:
  - ro
base_model:
  - OpenLLM-Ro/RoLlama3-8b-Instruct-2024-10-09
datasets:
  - OpenLLM-Ro/ro_dpo_helpsteer
model-index:
  - name: OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2024-10-09
    results:
      - task:
          type: text-generation
        dataset:
          name: RoMT-Bench
          type: RoMT-Bench
        metrics:
          - name: Score
            type: Score
            value: 5.87
      - task:
          type: text-generation
        dataset:
          name: RoCulturaBench
          type: RoCulturaBench
        metrics:
          - name: Score
            type: Score
            value: 4.4
      - task:
          type: text-generation
        dataset:
          name: Romanian_Academic_Benchmarks
          type: Romanian_Academic_Benchmarks
        metrics:
          - name: Average accuracy
            type: accuracy
            value: 49.96
      - task:
          type: text-generation
        dataset:
          name: OpenLLM-Ro/ro_arc_challenge
          type: OpenLLM-Ro/ro_arc_challenge
        metrics:
          - name: Average accuracy
            type: accuracy
            value: 46.29
      - task:
          type: text-generation
        dataset:
          name: OpenLLM-Ro/ro_mmlu
          type: OpenLLM-Ro/ro_mmlu
        metrics:
          - name: Average accuracy
            type: accuracy
            value: 53.29
      - task:
          type: text-generation
        dataset:
          name: OpenLLM-Ro/ro_winogrande
          type: OpenLLM-Ro/ro_winogrande
        metrics:
          - name: Average accuracy
            type: accuracy
            value: 65.57
      - task:
          type: text-generation
        dataset:
          name: OpenLLM-Ro/ro_hellaswag
          type: OpenLLM-Ro/ro_hellaswag
        metrics:
          - name: Average accuracy
            type: accuracy
            value: 58.15
      - task:
          type: text-generation
        dataset:
          name: OpenLLM-Ro/ro_gsm8k
          type: OpenLLM-Ro/ro_gsm8k
        metrics:
          - name: Average accuracy
            type: accuracy
            value: 34.77
      - task:
          type: text-generation
        dataset:
          name: OpenLLM-Ro/ro_truthfulqa
          type: OpenLLM-Ro/ro_truthfulqa
        metrics:
          - name: Average accuracy
            type: accuracy
            value: 41.7
      - task:
          type: text-generation
        dataset:
          name: LaRoSeDa_binary
          type: LaRoSeDa_binary
        metrics:
          - name: Average macro-f1
            type: macro-f1
            value: 97.48
      - task:
          type: text-generation
        dataset:
          name: LaRoSeDa_multiclass
          type: LaRoSeDa_multiclass
        metrics:
          - name: Average macro-f1
            type: macro-f1
            value: 54
      - task:
          type: text-generation
        dataset:
          name: LaRoSeDa_binary_finetuned
          type: LaRoSeDa_binary_finetuned
        metrics:
          - name: Average macro-f1
            type: macro-f1
            value: 0
      - task:
          type: text-generation
        dataset:
          name: LaRoSeDa_multiclass_finetuned
          type: LaRoSeDa_multiclass_finetuned
        metrics:
          - name: Average macro-f1
            type: macro-f1
            value: 0
      - task:
          type: text-generation
        dataset:
          name: WMT_EN-RO
          type: WMT_EN-RO
        metrics:
          - name: Average bleu
            type: bleu
            value: 22.09
      - task:
          type: text-generation
        dataset:
          name: WMT_RO-EN
          type: WMT_RO-EN
        metrics:
          - name: Average bleu
            type: bleu
            value: 23
      - task:
          type: text-generation
        dataset:
          name: WMT_EN-RO_finetuned
          type: WMT_EN-RO_finetuned
        metrics:
          - name: Average bleu
            type: bleu
            value: 0
      - task:
          type: text-generation
        dataset:
          name: WMT_RO-EN_finetuned
          type: WMT_RO-EN_finetuned
        metrics:
          - name: Average bleu
            type: bleu
            value: 0
      - task:
          type: text-generation
        dataset:
          name: XQuAD
          type: XQuAD
        metrics:
          - name: Average exact_match
            type: exact_match
            value: 26.05
      - task:
          type: text-generation
        dataset:
          name: XQuAD
          type: XQuAD
        metrics:
          - name: Average f1
            type: f1
            value: 42.77
      - task:
          type: text-generation
        dataset:
          name: XQuAD_finetuned
          type: XQuAD_finetuned
        metrics:
          - name: Average exact_match
            type: exact_match
            value: 0
      - task:
          type: text-generation
        dataset:
          name: XQuAD_finetuned
          type: XQuAD_finetuned
        metrics:
          - name: Average f1
            type: f1
            value: 0
      - task:
          type: text-generation
        dataset:
          name: STS
          type: STS
        metrics:
          - name: Average spearman
            type: spearman
            value: 79.64
      - task:
          type: text-generation
        dataset:
          name: STS
          type: STS
        metrics:
          - name: Average pearson
            type: pearson
            value: 79.52
      - task:
          type: text-generation
        dataset:
          name: STS_finetuned
          type: STS_finetuned
        metrics:
          - name: Average spearman
            type: spearman
            value: 0
      - task:
          type: text-generation
        dataset:
          name: STS_finetuned
          type: STS_finetuned
        metrics:
          - name: Average pearson
            type: pearson
            value: 0
      - task:
          type: text-generation
        dataset:
          name: RoMT-Bench
          type: RoMT-Bench
        metrics:
          - name: First turn
            type: Score
            value: 6.22
          - name: Second turn
            type: Score
            value: 5.49
      - task:
          type: text-generation
        dataset:
          name: OpenLLM-Ro/ro_arc_challenge
          type: OpenLLM-Ro/ro_arc_challenge
        metrics:
          - name: 0-shot
            type: accuracy
            value: 44.56
          - name: 1-shot
            type: accuracy
            value: 45.42
          - name: 3-shot
            type: accuracy
            value: 46.1
          - name: 5-shot
            type: accuracy
            value: 46.27
          - name: 10-shot
            type: accuracy
            value: 46.96
          - name: 25-shot
            type: accuracy
            value: 48.41
      - task:
          type: text-generation
        dataset:
          name: OpenLLM-Ro/ro_mmlu
          type: OpenLLM-Ro/ro_mmlu
        metrics:
          - name: 0-shot
            type: accuracy
            value: 52.33
          - name: 1-shot
            type: accuracy
            value: 52.86
          - name: 3-shot
            type: accuracy
            value: 54.06
          - name: 5-shot
            type: accuracy
            value: 53.9
      - task:
          type: text-generation
        dataset:
          name: OpenLLM-Ro/ro_winogrande
          type: OpenLLM-Ro/ro_winogrande
        metrics:
          - name: 0-shot
            type: accuracy
            value: 64.33
          - name: 1-shot
            type: accuracy
            value: 64.72
          - name: 3-shot
            type: accuracy
            value: 66.3
          - name: 5-shot
            type: accuracy
            value: 66.93
      - task:
          type: text-generation
        dataset:
          name: OpenLLM-Ro/ro_hellaswag
          type: OpenLLM-Ro/ro_hellaswag
        metrics:
          - name: 0-shot
            type: accuracy
            value: 57.45
          - name: 1-shot
            type: accuracy
            value: 57.65
          - name: 3-shot
            type: accuracy
            value: 58.18
          - name: 5-shot
            type: accuracy
            value: 58.64
          - name: 10-shot
            type: accuracy
            value: 58.85
      - task:
          type: text-generation
        dataset:
          name: OpenLLM-Ro/ro_gsm8k
          type: OpenLLM-Ro/ro_gsm8k
        metrics:
          - name: 1-shot
            type: accuracy
            value: 32.52
          - name: 3-shot
            type: accuracy
            value: 33.97
          - name: 5-shot
            type: accuracy
            value: 37.83
      - task:
          type: text-generation
        dataset:
          name: LaRoSeDa_binary
          type: LaRoSeDa_binary
        metrics:
          - name: 0-shot
            type: macro-f1
            value: 97.67
          - name: 1-shot
            type: macro-f1
            value: 97.07
          - name: 3-shot
            type: macro-f1
            value: 97.4
          - name: 5-shot
            type: macro-f1
            value: 97.8
      - task:
          type: text-generation
        dataset:
          name: LaRoSeDa_multiclass
          type: LaRoSeDa_multiclass
        metrics:
          - name: 0-shot
            type: macro-f1
            value: 58.49
          - name: 1-shot
            type: macro-f1
            value: 55.93
          - name: 3-shot
            type: macro-f1
            value: 47.7
          - name: 5-shot
            type: macro-f1
            value: 53.89
      - task:
          type: text-generation
        dataset:
          name: WMT_EN-RO
          type: WMT_EN-RO
        metrics:
          - name: 0-shot
            type: bleu
            value: 8.63
          - name: 1-shot
            type: bleu
            value: 25.89
          - name: 3-shot
            type: bleu
            value: 26.79
          - name: 5-shot
            type: bleu
            value: 27.05
      - task:
          type: text-generation
        dataset:
          name: WMT_RO-EN
          type: WMT_RO-EN
        metrics:
          - name: 0-shot
            type: bleu
            value: 3.56
          - name: 1-shot
            type: bleu
            value: 20.66
          - name: 3-shot
            type: bleu
            value: 33.56
          - name: 5-shot
            type: bleu
            value: 34.22
      - task:
          type: text-generation
        dataset:
          name: XQuAD_EM
          type: XQuAD_EM
        metrics:
          - name: 0-shot
            type: exact_match
            value: 11.26
          - name: 1-shot
            type: exact_match
            value: 34.29
          - name: 3-shot
            type: exact_match
            value: 29.24
          - name: 5-shot
            type: exact_match
            value: 29.41
      - task:
          type: text-generation
        dataset:
          name: XQuAD_F1
          type: XQuAD_F1
        metrics:
          - name: 0-shot
            type: f1
            value: 22.98
          - name: 1-shot
            type: f1
            value: 54.48
          - name: 3-shot
            type: f1
            value: 46.18
          - name: 5-shot
            type: f1
            value: 47.43
      - task:
          type: text-generation
        dataset:
          name: STS_Spearman
          type: STS_Spearman
        metrics:
          - name: 1-shot
            type: spearman
            value: 79.99
          - name: 3-shot
            type: spearman
            value: 78.42
          - name: 5-shot
            type: spearman
            value: 80.51
      - task:
          type: text-generation
        dataset:
          name: STS_Pearson
          type: STS_Pearson
        metrics:
          - name: 1-shot
            type: pearson
            value: 80.59
          - name: 3-shot
            type: pearson
            value: 78.11
          - name: 5-shot
            type: pearson
            value: 79.87

Model Card for Model ID

Built with Meta Llama 3

This model points/is identical to RoLlama3-8b-Instruct-DPO-2024-10-09.

RoLlama3 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the human aligned instruct 8B model. Links to other models can be found at the bottom of this page.

Model Details

Model Description

OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.

Model Sources

Intended Use

Intended Use Cases

RoLlama3 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.

Out-of-Scope Use

Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.

How to Get Started with the Model

Use the code below to get started with the model.

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2024-10-09")
model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2024-10-09")

instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
chat = [
        {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
        {"role": "user", "content": instruction},
        ]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")

inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
outputs = model.generate(input_ids=inputs, max_new_tokens=128)
print(tokenizer.decode(outputs[0]))

Academic Benchmarks

Model
Average
ARC
MMLU
Winogrande
Hellaswag
GSM8k
TruthfulQA
Llama-3-8B-Instruct
50.62
43.69
52.04
59.33
53.19
43.87
51.59
RoLlama3-8b-Instruct-2024-06-28
50.56
44.70
52.19
67.23
57.69
30.23
51.34
RoLlama3-8b-Instruct-2024-10-09
52.21
47.94
53.50
66.06
59.72
40.16
45.90
RoLlama3-8b-Instruct-DPO-2024-10-09
49.96
46.29
53.29
65.57
58.15
34.77
41.70

Downstream tasks

LaRoSeDa
WMT
Few-shot
Finetuned
Few-shot
Finetuned
Model
Binary
(Macro F1)
Multiclass
(Macro F1)
Binary
(Macro F1)
Multiclass
(Macro F1)
EN-RO
(Bleu)
RO-EN
(Bleu)
EN-RO
(Bleu)
RO-EN
(Bleu)
Llama-3-8B-Instruct
95.88
56.21
98.53
86.19
18.88
30.98
28.02
40.28
RoLlama3-8b-Instruct-2024-06-28
97.52
67.41
94.15
87.13
24.01
27.36
26.53
40.36
RoLlama3-8b-Instruct-2024-10-09
95.58
61.20
96.46
87.26
22.92
24.28
27.31
40.52
RoLlama3-8b-Instruct-DPO-2024-10-09
97.48
54.00
-
-
22.09
23.00
-
-
XQuAD
STS
Few-shot
Finetuned
Few-shot
Finetuned
Model
(EM)
(F1)
(EM)
(F1)
(Spearman)
(Pearson)
(Spearman)
(Pearson)
Llama-3-8B-Instruct
39.47
58.67
67.65
82.77
73.04
72.36
83.49
84.06
RoLlama3-8b-Instruct-2024-06-28
39.43
59.50
44.45
59.76
77.20
77.87
85.80
86.05
RoLlama3-8b-Instruct-2024-10-09
18.89
31.79
50.84
65.18
77.60
76.86
86.70
87.09
RoLlama3-8b-Instruct-DPO-2024-10-09
26.05
42.77
-
-
79.64
79.52
-
-

MT-Bench

Model
Average
1st turn
2nd turn
Answers in Ro
Llama-3-8B-Instruct
5.96
6.16
5.76
158/160
RoLlama3-8b-Instruct-2024-06-28
5.15
6.03
4.28
160/160
RoLlama3-8b-Instruct-2024-10-09
5.38
6.09
4.67
160/160
RoLlama3-8b-Instruct-DPO-2024-10-09
5.87
6.22
5.49
160/160

RoCulturaBench

Model
Average
Answers in Ro
Llama-3-8B-Instruct
4.62
100/100
RoLlama3-8b-Instruct-2024-06-28
3.71
100/100
RoLlama3-8b-Instruct-2024-10-09
3.81
100/100
RoLlama3-8b-Instruct-DPO-2024-10-09
4.40
100/100

RoLlama3 Model Family

Model Link
RoLlama3-8b-Instruct-2024-06-28 link
RoLlama3-8b-Instruct-2024-10-09 link
RoLlama3-8b-Instruct-DPO-2024-10-09 link

Citation

@misc{masala2024vorbecstiromanecsterecipetrain,
      title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions}, 
      author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
      year={2024},
      eprint={2406.18266},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2406.18266}, 
}