Ops-MM-embedding-v1-7B / ops_mm_embedding_v1.py
frozenc's picture
Upload folder using huggingface_hub
d135479 verified
import math
from typing import List, Optional, TypeAlias, Union
import torch
import torch.nn as nn
from PIL import Image
from tqdm import tqdm
from transformers import AutoModelForImageTextToText, AutoProcessor
ImageInput: TypeAlias = Union[Image.Image, List[Image.Image]]
BatchImageInput: TypeAlias = Union[List[Image.Image], List[List[Image.Image]]]
class OpsMMEmbeddingV1(nn.Module):
def __init__(
self,
model_name: str,
device: str = "cuda",
max_length: Optional[int] = None,
attn_implementation: Optional[str] = None,
):
super().__init__()
self.device = device
self.max_length = max_length
self.default_instruction = "You are a helpful assistant."
self.base_model = AutoModelForImageTextToText.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
attn_implementation=attn_implementation,
).to(self.device)
self.processor = AutoProcessor.from_pretrained(model_name, min_pixels=256 * 28 * 28, max_pixels=1280 * 28 * 28)
self.processor.tokenizer.padding_side = "left"
self.eval()
def encode_input(self, input):
hidden_states = self.base_model(**input, return_dict=True, output_hidden_states=True)
hidden_states = hidden_states.hidden_states[-1]
pooled_output = self._pooling(hidden_states)
return pooled_output
def _pooling(self, last_hidden_state):
batch_size = last_hidden_state.shape[0]
reps = last_hidden_state[torch.arange(batch_size), -1, :]
reps = torch.nn.functional.normalize(reps, p=2, dim=-1)
return reps
def _validate_instructions(
self,
texts: Optional[List[str]],
images: Optional[BatchImageInput],
instruction: Optional[Union[str, List[str]]],
) -> List[str]:
"""Validate and format instructions to match batch size"""
batch_size = max(len(x) if x is not None else 0 for x in [texts, images])
if instruction is None:
return [self.default_instruction] * batch_size
if isinstance(instruction, str):
return [instruction] * batch_size
if isinstance(instruction, list):
if len(instruction) != batch_size:
raise ValueError(f"Length of instruction list ({len(instruction)}) must match batch size ({batch_size}) when texts/images are provided")
return instruction
raise TypeError("instruction must be str, List[str] or None")
def _process_images(self, images: ImageInput) -> List[Image.Image]:
"""Convert single image or list of images to processed format"""
if isinstance(images, Image.Image) or isinstance(images, str):
return [fetch_image(images)]
return [fetch_image(i) for i in images]
def embed(
self,
texts: Optional[List[str]] = None,
images: Optional[BatchImageInput] = None,
instruction: Optional[Union[str, List[str]]] = None,
**kwargs,
) -> torch.Tensor:
"""Generate embeddings for text, images, or combined inputs.
Args:
texts: List of text inputs (optional)
images: Can be:
- List[Image.Image]: Single image per input
- List[List[Image.Image]]: Multiple images per input
instruction: Instruction(s) for the model. Can be:
- None: use default instruction
- str: use same instruction for all inputs
- List[str]: per-input instructions (must match batch size)
"""
if texts is None and images is None:
raise ValueError("Either texts or images must be provided")
instructions = self._validate_instructions(texts, images, instruction)
# Determine batch size
batch_size = len(texts) if texts is not None else len(images) # type: ignore
input_texts, input_images = [], []
for i in range(batch_size):
text = texts[i] if texts is not None else None
image = images[i] if images is not None else None
input_str = ""
processed_image = None
if image is not None:
processed_image = self._process_images(image)
input_str += "<|vision_start|><|image_pad|><|vision_end|>" * len(processed_image)
if text is not None:
input_str += text
msg = f"<|im_start|>system\n{instructions[i]}<|im_end|>\n<|im_start|>user\n{input_str}<|im_end|>\n<|im_start|>assistant\n<|endoftext|>"
input_texts.append(msg)
input_images.append(processed_image)
# Only pass to processor if we actually have images
processed_images = input_images if any(img is not None for img in input_images) else None
inputs = self.processor(
text=input_texts,
images=processed_images,
padding=True,
truncation=True,
max_length=self.max_length,
return_tensors="pt",
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.inference_mode():
embeddings = self.encode_input(inputs)
return embeddings
def get_text_embeddings(
self,
texts: List[str],
instruction: Optional[Union[str, List[str]]] = None,
**kwargs,
) -> torch.Tensor:
"""Convenience method for text-only embeddings"""
return self.get_fused_embeddings(texts=texts, instruction=instruction, **kwargs)
def get_image_embeddings(
self,
images: BatchImageInput,
instruction: Optional[Union[str, List[str]]] = None,
**kwargs,
) -> torch.Tensor:
"""Convenience method for image-only embeddings.
Args:
images: Can be:
- List[Image.Image]: Single image per input
- List[List[Image.Image]]: Multiple images per input
"""
return self.get_fused_embeddings(images=images, instruction=instruction, **kwargs)
def get_fused_embeddings(
self,
texts: Optional[List[str]] = None,
images: Optional[BatchImageInput] = None,
instruction: Optional[Union[str, List[str]]] = None,
batch_size: int = 8,
show_progress: bool = True,
**kwargs,
) -> torch.Tensor:
"""Batch processing for large collections of texts/images.
Args:
texts: List of text inputs (optional)
images: Can be:
- List[Image.Image]: Single image per input
- List[List[Image.Image]]: Multiple images per input
instruction: Instruction(s) for the model
batch_size: Number of items to process at once
show_progress: Whether to display progress bar
"""
if texts is None and images is None:
raise ValueError("Either texts or images must be provided")
total_items = len(texts) if texts is not None else len(images) # type: ignore
num_batches = math.ceil(total_items / batch_size)
all_embeddings = []
progress = tqdm(total=num_batches, disable=not show_progress, desc="Processing")
for i in range(0, total_items, batch_size):
batch_texts = texts[i : i + batch_size] if texts is not None else None
batch_images = images[i : i + batch_size] if images is not None else None
batch_emb = self.embed(texts=batch_texts, images=batch_images, instruction=instruction)
all_embeddings.append(batch_emb.cpu())
progress.update(1)
progress.close()
return torch.cat(all_embeddings, dim=0).to(self.device)
def forward(self, **inputs) -> torch.Tensor:
"""Alias for encode_input"""
return self.encode_input(inputs)
### Modified from qwen_vl_utils.vision_process.py
import base64
import logging
import math
from io import BytesIO
import requests
IMAGE_FACTOR = 28
MIN_PIXELS = 256 * 28 * 28
MAX_PIXELS = 1280 * 28 * 28
MAX_RATIO = 200
def round_by_factor(number: int, factor: int) -> int:
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
return round(number / factor) * factor
def ceil_by_factor(number: int | float, factor: int) -> int:
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
return math.ceil(number / factor) * factor
def floor_by_factor(number: int | float, factor: int) -> int:
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
return math.floor(number / factor) * factor
def smart_resize(
height: int,
width: int,
factor: int = IMAGE_FACTOR,
min_pixels: int = MIN_PIXELS,
max_pixels: int = MAX_PIXELS,
) -> tuple[int, int]:
"""
Rescales the image so that the following conditions are met:
1. Both dimensions (height and width) are divisible by 'factor'.
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
3. The aspect ratio of the image is maintained as closely as possible.
"""
h_bar = max(factor, round_by_factor(height, factor))
w_bar = max(factor, round_by_factor(width, factor))
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = floor_by_factor(height / beta, factor)
w_bar = floor_by_factor(width / beta, factor)
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = ceil_by_factor(height * beta, factor)
w_bar = ceil_by_factor(width * beta, factor)
if max(h_bar, w_bar) / min(h_bar, w_bar) > MAX_RATIO:
logging.warning(f"Absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(h_bar, w_bar) / min(h_bar, w_bar)}")
if h_bar > w_bar:
h_bar = w_bar * MAX_RATIO
else:
w_bar = h_bar * MAX_RATIO
return h_bar, w_bar
def fetch_image(
image: str | Image.Image,
size_factor: int = IMAGE_FACTOR,
min_pixels: int = MIN_PIXELS,
max_pixels: int = MAX_PIXELS,
) -> Image.Image:
image_obj = None
if isinstance(image, Image.Image):
image_obj = image
elif image.startswith("http://") or image.startswith("https://"):
image_obj = Image.open(requests.get(image, stream=True).raw) # type: ignore
elif image.startswith("file://"):
image_obj = Image.open(image[7:])
elif image.startswith("data:image"):
if "base64," in image:
_, base64_data = image.split("base64,", 1)
data = base64.b64decode(base64_data)
image_obj = Image.open(BytesIO(data))
else:
image_obj = Image.open(image)
if image_obj is None:
raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}")
image = image_obj.convert("RGB")
width, height = image.size
resized_height, resized_width = smart_resize(
height,
width,
factor=size_factor,
min_pixels=min_pixels,
max_pixels=max_pixels,
)
image = image.resize((resized_width, resized_height))
return image
###