Update README.md
Browse files
README.md
CHANGED
@@ -10,32 +10,32 @@ tags:
|
|
10 |
- colpali
|
11 |
- multimodal-embedding
|
12 |
---
|
13 |
-
|
14 |
|
15 |
**Ops-MM-embedding-v1-7B** is a dense, large-scale multimodal embedding model developed and open-sourced by the Alibaba Cloud OpenSearch-AI team, fine-tuned from Qwen2-VL.
|
16 |
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
- Encodes text, images, text-image pairs, visual documents, and videos (by treating video frames as multiple image inputs) into a unified embedding space for cross-modal retrieval.
|
22 |
|
23 |
-
|
24 |
- Achieves **SOTA results** among models of similar scale on **MMEB-V2** and **MMEB-Image** benchmark (until 2025-07-03).
|
25 |
|
26 |
-
|
27 |
- **Ops-MM-embedding-v1-7B** achieves SOTA performance among dense models on the ViDoRe-v2 benchmark, demonstrating strong cross-lingual generalization.
|
28 |
|
29 |
|
30 |
|
31 |
-
|
32 |
|
33 |
MMEB-train, CC-3M, colpali training set.
|
34 |
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
39 |
|
40 |
| Model | Model Size (B) | Overall | Image-Overall | Video-Overall | Visdoc-Overall |
|
41 |
| ------------------------ | -------------- | ------- | ------------- | ------------- | -------------- |
|
@@ -46,7 +46,7 @@ MMEB-train, CC-3M, colpali training set.
|
|
46 |
| gme-Qwen2-VL-2B-Instruct | 2.21 | 54.37 | 51.89 | 33.86 | 73.47 |
|
47 |
|
48 |
|
49 |
-
|
50 |
|
51 |
The table below compares performance on MMEB-Image benchmark among models of similar size.
|
52 |
|
@@ -60,7 +60,7 @@ The table below compares performance on MMEB-Image benchmark among models of sim
|
|
60 |
| UNITE-Instruct-7B | 8.29 | 70.3 | 68.3 | 65.1 | 71.6 | 84.8 |
|
61 |
|
62 |
|
63 |
-
|
64 |
|
65 |
| Model | Avg | ESG Restaurant Human | MIT Bio | Econ. Macro | ESG Restaurant Synth. | MIT Bio Multi. | Econ Macro Multi. | ESG Restaurant Synth. Multi. |
|
66 |
| ---------------------- | -------- | -------------------- | ------- | ----------- | --------------------- | -------------- | ----------------- | ---------------------------- |
|
|
|
10 |
- colpali
|
11 |
- multimodal-embedding
|
12 |
---
|
13 |
+
# Ops-MM-embedding-v1-7B
|
14 |
|
15 |
**Ops-MM-embedding-v1-7B** is a dense, large-scale multimodal embedding model developed and open-sourced by the Alibaba Cloud OpenSearch-AI team, fine-tuned from Qwen2-VL.
|
16 |
|
17 |
|
18 |
+
## **Key Features**
|
19 |
|
20 |
+
### Unified Multimodal Embeddings
|
21 |
- Encodes text, images, text-image pairs, visual documents, and videos (by treating video frames as multiple image inputs) into a unified embedding space for cross-modal retrieval.
|
22 |
|
23 |
+
### High Performance on MMEB
|
24 |
- Achieves **SOTA results** among models of similar scale on **MMEB-V2** and **MMEB-Image** benchmark (until 2025-07-03).
|
25 |
|
26 |
+
### Multilingual Capabilities
|
27 |
- **Ops-MM-embedding-v1-7B** achieves SOTA performance among dense models on the ViDoRe-v2 benchmark, demonstrating strong cross-lingual generalization.
|
28 |
|
29 |
|
30 |
|
31 |
+
## Training data
|
32 |
|
33 |
MMEB-train, CC-3M, colpali training set.
|
34 |
|
35 |
|
36 |
+
## Performance
|
37 |
|
38 |
+
### MMEB-V2
|
39 |
|
40 |
| Model | Model Size (B) | Overall | Image-Overall | Video-Overall | Visdoc-Overall |
|
41 |
| ------------------------ | -------------- | ------- | ------------- | ------------- | -------------- |
|
|
|
46 |
| gme-Qwen2-VL-2B-Instruct | 2.21 | 54.37 | 51.89 | 33.86 | 73.47 |
|
47 |
|
48 |
|
49 |
+
### MMEB-Image
|
50 |
|
51 |
The table below compares performance on MMEB-Image benchmark among models of similar size.
|
52 |
|
|
|
60 |
| UNITE-Instruct-7B | 8.29 | 70.3 | 68.3 | 65.1 | 71.6 | 84.8 |
|
61 |
|
62 |
|
63 |
+
### ViDoRe-v2
|
64 |
|
65 |
| Model | Avg | ESG Restaurant Human | MIT Bio | Econ. Macro | ESG Restaurant Synth. | MIT Bio Multi. | Econ Macro Multi. | ESG Restaurant Synth. Multi. |
|
66 |
| ---------------------- | -------- | -------------------- | ------- | ----------- | --------------------- | -------------- | ----------------- | ---------------------------- |
|