frozenc commited on
Commit
60efc1a
·
verified ·
1 Parent(s): d135479

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -5
README.md CHANGED
@@ -1,8 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
  ### Ops-MM-embedding-v1-7B
2
 
3
  **Ops-MM-embedding-v1-7B** is a dense, large-scale multimodal embedding model developed and open-sourced by the Alibaba Cloud OpenSearch-AI team, fine-tuned from Qwen2-VL.
4
 
5
- ---
6
 
7
  ### **Key Features**
8
 
@@ -34,7 +45,6 @@ MMEB-train, CC-3M, colpali training set.
34
  | VLM2Vec-V2.0-Qwen2VL-2B | 2.21 | 58.39 | 64.85 | 34.85 | 66.34 |
35
  | gme-Qwen2-VL-2B-Instruct | 2.21 | 54.37 | 51.89 | 33.86 | 73.47 |
36
 
37
- ---
38
 
39
  #### MMEB-Image
40
 
@@ -49,7 +59,6 @@ The table below compares performance on MMEB-Image benchmark among models of sim
49
  | LLaVE-7B | 8.03 | 70.3 | 65.7 | 65.4 | 70.9 | 91.9 |
50
  | UNITE-Instruct-7B | 8.29 | 70.3 | 68.3 | 65.1 | 71.6 | 84.8 |
51
 
52
- ---
53
 
54
  #### ViDoRe-v2
55
 
@@ -62,7 +71,6 @@ The table below compares performance on MMEB-Image benchmark among models of sim
62
 
63
 
64
 
65
-
66
  ## Usage
67
 
68
  ```python
@@ -106,4 +114,4 @@ multi_images = [
106
  multi_image_embeddings = model.get_image_embeddings(multi_images)
107
  print('Multi-image embeddings', (multi_image_embeddings @ multi_image_embeddings.T).tolist())
108
 
109
- ```
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - multilingual
5
+ base_model:
6
+ - Qwen/Qwen2-VL-7B-Instruct
7
+ tags:
8
+ - mmeb
9
+ - vidore
10
+ - colpali
11
+ - multimodal-embedding
12
+ ---
13
  ### Ops-MM-embedding-v1-7B
14
 
15
  **Ops-MM-embedding-v1-7B** is a dense, large-scale multimodal embedding model developed and open-sourced by the Alibaba Cloud OpenSearch-AI team, fine-tuned from Qwen2-VL.
16
 
 
17
 
18
  ### **Key Features**
19
 
 
45
  | VLM2Vec-V2.0-Qwen2VL-2B | 2.21 | 58.39 | 64.85 | 34.85 | 66.34 |
46
  | gme-Qwen2-VL-2B-Instruct | 2.21 | 54.37 | 51.89 | 33.86 | 73.47 |
47
 
 
48
 
49
  #### MMEB-Image
50
 
 
59
  | LLaVE-7B | 8.03 | 70.3 | 65.7 | 65.4 | 70.9 | 91.9 |
60
  | UNITE-Instruct-7B | 8.29 | 70.3 | 68.3 | 65.1 | 71.6 | 84.8 |
61
 
 
62
 
63
  #### ViDoRe-v2
64
 
 
71
 
72
 
73
 
 
74
  ## Usage
75
 
76
  ```python
 
114
  multi_image_embeddings = model.get_image_embeddings(multi_images)
115
  print('Multi-image embeddings', (multi_image_embeddings @ multi_image_embeddings.T).tolist())
116
 
117
+ ```