File size: 6,946 Bytes
0a1f733 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
# CognoSphere Unified Multimodal Language Model (CSUMLM)
import tensorflow as tf
import numpy as np
import os
import random
# Data Processing
class DataProcessor:
def __init__(self, data_dir):
self.data_dir = data_dir
self.text_data = []
self.image_data = []
self.audio_data = []
self.load_data()
def load_data(self):
# Load text data
text_files = os.listdir(os.path.join(self.data_dir, 'text'))
for file in text_files:
with open(os.path.join(self.data_dir, 'text', file), 'r') as f:
self.text_data.extend(f.readlines())
# Load image data
image_files = os.listdir(os.path.join(self.data_dir, 'images'))
for file in image_files:
self.image_data.append(os.path.join(self.data_dir, 'images', file))
# Load audio data
audio_files = os.listdir(os.path.join(self.data_dir, 'audio'))
for file in audio_files:
self.audio_data.append(os.path.join(self.data_dir, 'audio', file))
def get_batch(self, batch_size):
# Randomly sample data from each modality
text_batch = random.sample(self.text_data, batch_size)
image_batch = random.sample(self.image_data, batch_size)
audio_batch = random.sample(self.audio_data, batch_size)
return text_batch, image_batch, audio_batch
# Hybrid Learning Engine
class HybridLearningEngine:
def __init__(self, data_processor):
self.data_processor = data_processor
self.model = self.build_model()
def build_model(self):
# Define the model architecture
# Combine transfer learning, deep learning, self-supervised learning, meta-learning,
# deep meta-learning, reinforcement learning, and cross-domain analogy extraction
# ...
return model
def train(self, epochs, batch_size):
for epoch in range(epochs):
text_batch, image_batch, audio_batch = self.data_processor.get_batch(batch_size)
# Train the model on the batch
# ...
# Advanced Attention Mechanism
class AttentionMechanism:
def __init__(self):
self.traditional_attention = TraditionalAttention()
self.self_attention = SelfAttention()
self.linear_attention = LinearAttention()
def apply_attention(self, inputs):
# Combine traditional attention, self-attention, and linear attention
# ...
return attended_inputs
# Hierarchical Belief Desire Intent Tree/Chain of Thought Structure
class BeliefDesireIntentTree:
def __init__(self):
self.root = None
def build_tree(self, inputs):
# Construct the Belief Desire Intent Tree/Chain of Thought Structure
# ...
return self.root
# Modular Python Architecture
class CSUMLM:
def __init__(self, data_dir):
self.data_processor = DataProcessor(data_dir)
self.learning_engine = HybridLearningEngine(self.data_processor)
self.attention_mechanism = AttentionMechanism()
self.belief_desire_intent_tree = BeliefDesireIntentTree()
def train(self, epochs, batch_size):
self.learning_engine.train(epochs, batch_size)
def process_input(self, inputs):
# Preprocess inputs
# ...
# Apply attention mechanism
attended_inputs = self.attention_mechanism.apply_attention(inputs)
# Build Belief Desire Intent Tree/Chain of Thought Structure
belief_desire_intent_tree = self.belief_desire_intent_tree.build_tree(attended_inputs)
# Generate output based on the tree
# ...
return output
# Real-time Learning Mechanisms
class RealtimeLearningMechanism:
def __init__(self, model):
self.model = model
def update_model(self, new_data):
# Update the model with new data
# ...
# Dynamic Knowledge Base
class DynamicKnowledgeBase:
def __init__(self):
self.knowledge_base = {}
def update_knowledge_base(self, new_knowledge):
# Update the knowledge base with new linguistic and multimodal patterns
# ...
# Explainability and Transparency
class Explainer:
def __init__(self, model):
self.model = model
def explain_prediction(self, inputs):
# Generate explanations for model predictions and responses
# ...
return explanation
# Internal Retrieval Augmented Generation Enhanced Logic (I-RAGEL)
class IRAGEL:
def __init__(self, model, knowledge_base):
self.model = model
self.knowledge_base = knowledge_base
def retrieve_or_generate(self, inputs):
# Retrieve or generate additional linguistic and multimodal data
# ...
return augmented_inputs
def reflect_and_improve(self, inputs, outputs):
# Reflect on generated logic and improve decision-making processes
# ...
return improved_outputs
def self_train(self, inputs, outputs):
# Implement self-training for continuous performance enhancement
# ...
# Main CSUMLM Class
class CSUMLM:
def __init__(self, data_dir):
self.data_processor = DataProcessor(data_dir)
self.learning_engine = HybridLearningEngine(self.data_processor)
self.attention_mechanism = AttentionMechanism()
self.belief_desire_intent_tree = BeliefDesireIntentTree()
self.realtime_learning_mechanism = RealtimeLearningMechanism(self.learning_engine.model)
self.knowledge_base = DynamicKnowledgeBase()
self.explainer = Explainer(self.learning_engine.model)
self.iragel = IRAGEL(self.learning_engine.model, self.knowledge_base)
def train(self, epochs, batch_size):
self.learning_engine.train(epochs, batch_size)
def process_input(self, inputs):
# Preprocess inputs
# ...
# Apply attention mechanism
attended_inputs = self.attention_mechanism.apply_attention(inputs)
# Build Belief Desire Intent Tree/Chain of Thought Structure
belief_desire_intent_tree = self.belief_desire_intent_tree.build_tree(attended_inputs)
# Retrieve or generate additional data
augmented_inputs = self.iragel.retrieve_or_generate(attended_inputs)
# Generate output based on the tree and augmented inputs
outputs = self.learning_engine.model(augmented_inputs, belief_desire_intent_tree)
# Reflect and improve outputs
improved_outputs = self.iragel.reflect_and_improve(augmented_inputs, outputs)
# Explain predictions
explanation = self.explainer.explain_prediction(improved_outputs)
# Update knowledge base and model
self.knowledge_base.update_knowledge_base(new_knowledge)
self.realtime_learning_mechanism.update_model(new_data)
# Self-train the model
self.iragel.self_train(augmented_inputs, improved_outputs)
return improved_outputs, explanation |