File size: 6,946 Bytes
0a1f733
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# CognoSphere Unified Multimodal Language Model (CSUMLM)

import tensorflow as tf
import numpy as np
import os
import random

# Data Processing
class DataProcessor:
    def __init__(self, data_dir):
        self.data_dir = data_dir
        self.text_data = []
        self.image_data = []
        self.audio_data = []
        self.load_data()

    def load_data(self):
        # Load text data
        text_files = os.listdir(os.path.join(self.data_dir, 'text'))
        for file in text_files:
            with open(os.path.join(self.data_dir, 'text', file), 'r') as f:
                self.text_data.extend(f.readlines())

        # Load image data
        image_files = os.listdir(os.path.join(self.data_dir, 'images'))
        for file in image_files:
            self.image_data.append(os.path.join(self.data_dir, 'images', file))

        # Load audio data
        audio_files = os.listdir(os.path.join(self.data_dir, 'audio'))
        for file in audio_files:
            self.audio_data.append(os.path.join(self.data_dir, 'audio', file))

    def get_batch(self, batch_size):
        # Randomly sample data from each modality
        text_batch = random.sample(self.text_data, batch_size)
        image_batch = random.sample(self.image_data, batch_size)
        audio_batch = random.sample(self.audio_data, batch_size)

        return text_batch, image_batch, audio_batch

# Hybrid Learning Engine
class HybridLearningEngine:
    def __init__(self, data_processor):
        self.data_processor = data_processor
        self.model = self.build_model()

    def build_model(self):
        # Define the model architecture
        # Combine transfer learning, deep learning, self-supervised learning, meta-learning,
        # deep meta-learning, reinforcement learning, and cross-domain analogy extraction
        # ...

        return model

    def train(self, epochs, batch_size):
        for epoch in range(epochs):
            text_batch, image_batch, audio_batch = self.data_processor.get_batch(batch_size)

            # Train the model on the batch
            # ...

# Advanced Attention Mechanism
class AttentionMechanism:
    def __init__(self):
        self.traditional_attention = TraditionalAttention()
        self.self_attention = SelfAttention()
        self.linear_attention = LinearAttention()

    def apply_attention(self, inputs):
        # Combine traditional attention, self-attention, and linear attention
        # ...

        return attended_inputs

# Hierarchical Belief Desire Intent Tree/Chain of Thought Structure
class BeliefDesireIntentTree:
    def __init__(self):
        self.root = None

    def build_tree(self, inputs):
        # Construct the Belief Desire Intent Tree/Chain of Thought Structure
        # ...

        return self.root

# Modular Python Architecture
class CSUMLM:
    def __init__(self, data_dir):
        self.data_processor = DataProcessor(data_dir)
        self.learning_engine = HybridLearningEngine(self.data_processor)
        self.attention_mechanism = AttentionMechanism()
        self.belief_desire_intent_tree = BeliefDesireIntentTree()

    def train(self, epochs, batch_size):
        self.learning_engine.train(epochs, batch_size)

    def process_input(self, inputs):
        # Preprocess inputs
        # ...

        # Apply attention mechanism
        attended_inputs = self.attention_mechanism.apply_attention(inputs)

        # Build Belief Desire Intent Tree/Chain of Thought Structure
        belief_desire_intent_tree = self.belief_desire_intent_tree.build_tree(attended_inputs)

        # Generate output based on the tree
        # ...

        return output

# Real-time Learning Mechanisms
class RealtimeLearningMechanism:
    def __init__(self, model):
        self.model = model

    def update_model(self, new_data):
        # Update the model with new data
        # ...

# Dynamic Knowledge Base
class DynamicKnowledgeBase:
    def __init__(self):
        self.knowledge_base = {}

    def update_knowledge_base(self, new_knowledge):
        # Update the knowledge base with new linguistic and multimodal patterns
        # ...

# Explainability and Transparency
class Explainer:
    def __init__(self, model):
        self.model = model

    def explain_prediction(self, inputs):
        # Generate explanations for model predictions and responses
        # ...

        return explanation

# Internal Retrieval Augmented Generation Enhanced Logic (I-RAGEL)
class IRAGEL:
    def __init__(self, model, knowledge_base):
        self.model = model
        self.knowledge_base = knowledge_base

    def retrieve_or_generate(self, inputs):
        # Retrieve or generate additional linguistic and multimodal data
        # ...

        return augmented_inputs

    def reflect_and_improve(self, inputs, outputs):
        # Reflect on generated logic and improve decision-making processes
        # ...

        return improved_outputs

    def self_train(self, inputs, outputs):
        # Implement self-training for continuous performance enhancement
        # ...

# Main CSUMLM Class
class CSUMLM:
    def __init__(self, data_dir):
        self.data_processor = DataProcessor(data_dir)
        self.learning_engine = HybridLearningEngine(self.data_processor)
        self.attention_mechanism = AttentionMechanism()
        self.belief_desire_intent_tree = BeliefDesireIntentTree()
        self.realtime_learning_mechanism = RealtimeLearningMechanism(self.learning_engine.model)
        self.knowledge_base = DynamicKnowledgeBase()
        self.explainer = Explainer(self.learning_engine.model)
        self.iragel = IRAGEL(self.learning_engine.model, self.knowledge_base)

    def train(self, epochs, batch_size):
        self.learning_engine.train(epochs, batch_size)

    def process_input(self, inputs):
        # Preprocess inputs
        # ...

        # Apply attention mechanism
        attended_inputs = self.attention_mechanism.apply_attention(inputs)

        # Build Belief Desire Intent Tree/Chain of Thought Structure
        belief_desire_intent_tree = self.belief_desire_intent_tree.build_tree(attended_inputs)

        # Retrieve or generate additional data
        augmented_inputs = self.iragel.retrieve_or_generate(attended_inputs)

        # Generate output based on the tree and augmented inputs
        outputs = self.learning_engine.model(augmented_inputs, belief_desire_intent_tree)

        # Reflect and improve outputs
        improved_outputs = self.iragel.reflect_and_improve(augmented_inputs, outputs)

        # Explain predictions
        explanation = self.explainer.explain_prediction(improved_outputs)

        # Update knowledge base and model
        self.knowledge_base.update_knowledge_base(new_knowledge)
        self.realtime_learning_mechanism.update_model(new_data)

        # Self-train the model
        self.iragel.self_train(augmented_inputs, improved_outputs)

        return improved_outputs, explanation