CSUMLM / modeling_csumlm.py
Or4cl3-1's picture
Create modeling_csumlm.py
26d22a0 verified
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from transformers import PreTrainedModel, PreTrainedEncoder, PreTrainedDecoder
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
from transformers.utils import logging
logger = logging.get_logger(__name__)
class CSUMLMEncoder(PreTrainedEncoder):
def __init__(self, config):
super().__init__(config)
# Define the text encoder, image encoder, and audio encoder architectures
# ...
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
# Implement the forward pass for the encoder
# ...
return encoder_outputs
class CSUMLMDecoder(PreTrainedDecoder):
def __init__(self, config):
super().__init__(config)
# Define the decoder architecture
# ...
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
# Implement the forward pass for the decoder
# ...
return decoder_outputs
class CSUMLMModel(PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.encoder = CSUMLMEncoder(config)
self.decoder = CSUMLMDecoder(config)
self.multimodal_fusion = MultimodalFusion(config)
# Initialize other components (e.g., attention mechanism, belief desire intent tree)
# ...
def forward(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs=None,
past_key_values=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
# Implement the forward pass for the CSUMLM model
# ...
return output
# Register the custom model with Hugging Face Transformers
CSUMLMModel.register_for_auto_class()