Solon Embeddings — large 0.1
SOTA Open source french embedding model.
Instructions :
Add "query : " before the query to retrieve to increase performance of retrieval.
No instructions needed for passages.
Model | Mean Score |
---|---|
OrdalieTech/Solon-embeddings-large-0.1 | 0.7490 |
cohere/embed-multilingual-v3 | 0.7402 |
OrdalieTech/Solon-embeddings-base-0.1 | 0.7306 |
openai/ada-002 | 0.7290 |
cohere/embed-multilingual-light-v3 | 0.6945 |
antoinelouis/biencoder-camembert-base-mmarcoFR | 0.6826 |
dangvantuan/sentence-camembert-large | 0.6756 |
voyage/voyage-01 | 0.6753 |
intfloat/multilingual-e5-large | 0.6660 |
intfloat/multilingual-e5-base | 0.6597 |
Sbert/paraphrase-multilingual-mpnet-base-v2 | 0.5975 |
dangvantuan/sentence-camembert-base | 0.5456 |
EuropeanParliament/eubert_embedding_v1 | 0.5063 |
These results have been obtained through 9 french benchmarks on a variety of text similarity tasks (classification, reranking, STS) :
- AmazonReviewsClassification (MTEB)
- MassiveIntentClassification (MTEB)
- MassiveScenarioClassification (MTEB)
- MTOPDomainClassification (MTEB)
- MTOPIntentClassification (MTEB)
- STS22 (MTEB)
- MiraclFRRerank (Miracl)
- OrdalieFRSTS (Ordalie)
- OrdalieFRReranking (Ordalie)
We created OrdalieFRSTS and OrdalieFRReranking to enhance the benchmarking capabilities of French STS and reranking assessments.
(evaluation script available here : github.com/OrdalieTech/mteb)
- Downloads last month
- 47,162
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Spaces using OrdalieTech/Solon-embeddings-large-0.1 11
Evaluation results
- Recall@500 on mMARCO-frvalidation set self-reported92.700
- Recall@100 on mMARCO-frvalidation set self-reported82.700
- Recall@10 on mMARCO-frvalidation set self-reported55.500
- MAP@10 on mMARCO-frvalidation set self-reported29.400
- nDCG@10 on mMARCO-frvalidation set self-reported35.800
- MRR@10 on mMARCO-frvalidation set self-reported29.900
- v_measure on MTEB AlloProfClusteringP2Ptest set self-reported64.169
- v_measure on MTEB AlloProfClusteringS2Stest set self-reported38.171
- map on MTEB AlloprofRerankingtest set self-reported64.877
- mrr on MTEB AlloprofRerankingtest set self-reported66.391