netapy commited on
Commit
9f4ea2b
1 Parent(s): 8a32b70

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +682 -6
README.md CHANGED
@@ -1,11 +1,687 @@
1
  ---
2
- pipeline_tag: sentence-similarity
3
  tags:
4
- - feature-extraction
5
- license: mit
6
- language:
7
- - fr
8
- - en
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
  # Solon Embeddings — large 0.1
 
1
  ---
 
2
  tags:
3
+ - mteb
4
+ model-index:
5
+ - name: Solon-embeddings-large-0.1
6
+ results:
7
+ - task:
8
+ type: Clustering
9
+ dataset:
10
+ type: lyon-nlp/alloprof
11
+ name: MTEB AlloProfClusteringP2P
12
+ config: default
13
+ split: test
14
+ revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
15
+ metrics:
16
+ - type: v_measure
17
+ value: 64.16942168287153
18
+ - task:
19
+ type: Clustering
20
+ dataset:
21
+ type: lyon-nlp/alloprof
22
+ name: MTEB AlloProfClusteringS2S
23
+ config: default
24
+ split: test
25
+ revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
26
+ metrics:
27
+ - type: v_measure
28
+ value: 38.17076313383054
29
+ - task:
30
+ type: Reranking
31
+ dataset:
32
+ type: lyon-nlp/mteb-fr-reranking-alloprof-s2p
33
+ name: MTEB AlloprofReranking
34
+ config: default
35
+ split: test
36
+ revision: 666fdacebe0291776e86f29345663dfaf80a0db9
37
+ metrics:
38
+ - type: map
39
+ value: 64.8770878097632
40
+ - type: mrr
41
+ value: 66.39132423169396
42
+ - task:
43
+ type: Retrieval
44
+ dataset:
45
+ type: lyon-nlp/alloprof
46
+ name: MTEB AlloprofRetrieval
47
+ config: default
48
+ split: test
49
+ revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
50
+ metrics:
51
+ - type: map_at_1
52
+ value: 29.62
53
+ - type: map_at_10
54
+ value: 40.963
55
+ - type: map_at_100
56
+ value: 41.894
57
+ - type: map_at_1000
58
+ value: 41.939
59
+ - type: map_at_3
60
+ value: 37.708999999999996
61
+ - type: map_at_5
62
+ value: 39.696999999999996
63
+ - type: mrr_at_1
64
+ value: 29.62
65
+ - type: mrr_at_10
66
+ value: 40.963
67
+ - type: mrr_at_100
68
+ value: 41.894
69
+ - type: mrr_at_1000
70
+ value: 41.939
71
+ - type: mrr_at_3
72
+ value: 37.708999999999996
73
+ - type: mrr_at_5
74
+ value: 39.696999999999996
75
+ - type: ndcg_at_1
76
+ value: 29.62
77
+ - type: ndcg_at_10
78
+ value: 46.942
79
+ - type: ndcg_at_100
80
+ value: 51.629999999999995
81
+ - type: ndcg_at_1000
82
+ value: 52.927
83
+ - type: ndcg_at_3
84
+ value: 40.333999999999996
85
+ - type: ndcg_at_5
86
+ value: 43.922
87
+ - type: precision_at_1
88
+ value: 29.62
89
+ - type: precision_at_10
90
+ value: 6.589
91
+ - type: precision_at_100
92
+ value: 0.882
93
+ - type: precision_at_1000
94
+ value: 0.099
95
+ - type: precision_at_3
96
+ value: 15.976
97
+ - type: precision_at_5
98
+ value: 11.33
99
+ - type: recall_at_1
100
+ value: 29.62
101
+ - type: recall_at_10
102
+ value: 65.889
103
+ - type: recall_at_100
104
+ value: 88.212
105
+ - type: recall_at_1000
106
+ value: 98.575
107
+ - type: recall_at_3
108
+ value: 47.927
109
+ - type: recall_at_5
110
+ value: 56.64900000000001
111
+ - task:
112
+ type: Classification
113
+ dataset:
114
+ type: mteb/amazon_reviews_multi
115
+ name: MTEB AmazonReviewsClassification (fr)
116
+ config: fr
117
+ split: test
118
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
119
+ metrics:
120
+ - type: accuracy
121
+ value: 42.077999999999996
122
+ - type: f1
123
+ value: 40.64511241732637
124
+ - task:
125
+ type: Retrieval
126
+ dataset:
127
+ type: maastrichtlawtech/bsard
128
+ name: MTEB BSARDRetrieval
129
+ config: default
130
+ split: test
131
+ revision: 5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59
132
+ metrics:
133
+ - type: map_at_1
134
+ value: 0.901
135
+ - type: map_at_10
136
+ value: 1.524
137
+ - type: map_at_100
138
+ value: 1.833
139
+ - type: map_at_1000
140
+ value: 1.916
141
+ - type: map_at_3
142
+ value: 1.276
143
+ - type: map_at_5
144
+ value: 1.276
145
+ - type: mrr_at_1
146
+ value: 0.901
147
+ - type: mrr_at_10
148
+ value: 1.524
149
+ - type: mrr_at_100
150
+ value: 1.833
151
+ - type: mrr_at_1000
152
+ value: 1.916
153
+ - type: mrr_at_3
154
+ value: 1.276
155
+ - type: mrr_at_5
156
+ value: 1.276
157
+ - type: ndcg_at_1
158
+ value: 0.901
159
+ - type: ndcg_at_10
160
+ value: 2.085
161
+ - type: ndcg_at_100
162
+ value: 3.805
163
+ - type: ndcg_at_1000
164
+ value: 6.704000000000001
165
+ - type: ndcg_at_3
166
+ value: 1.41
167
+ - type: ndcg_at_5
168
+ value: 1.41
169
+ - type: precision_at_1
170
+ value: 0.901
171
+ - type: precision_at_10
172
+ value: 0.40499999999999997
173
+ - type: precision_at_100
174
+ value: 0.126
175
+ - type: precision_at_1000
176
+ value: 0.037
177
+ - type: precision_at_3
178
+ value: 0.601
179
+ - type: precision_at_5
180
+ value: 0.36
181
+ - type: recall_at_1
182
+ value: 0.901
183
+ - type: recall_at_10
184
+ value: 4.054
185
+ - type: recall_at_100
186
+ value: 12.613
187
+ - type: recall_at_1000
188
+ value: 36.937
189
+ - type: recall_at_3
190
+ value: 1.802
191
+ - type: recall_at_5
192
+ value: 1.802
193
+ - task:
194
+ type: BitextMining
195
+ dataset:
196
+ type: rbawden/DiaBLa
197
+ name: MTEB DiaBLaBitextMining (fr-en)
198
+ config: fr-en
199
+ split: test
200
+ revision: 5345895c56a601afe1a98519ce3199be60a27dba
201
+ metrics:
202
+ - type: accuracy
203
+ value: 88.90048712595686
204
+ - type: f1
205
+ value: 86.94952864886115
206
+ - type: precision
207
+ value: 86.20344379175826
208
+ - type: recall
209
+ value: 88.90048712595686
210
+ - task:
211
+ type: Clustering
212
+ dataset:
213
+ type: lyon-nlp/clustering-hal-s2s
214
+ name: MTEB HALClusteringS2S
215
+ config: default
216
+ split: test
217
+ revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915
218
+ metrics:
219
+ - type: v_measure
220
+ value: 24.087988843991155
221
+ - task:
222
+ type: Clustering
223
+ dataset:
224
+ type: mlsum
225
+ name: MTEB MLSUMClusteringP2P
226
+ config: default
227
+ split: test
228
+ revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
229
+ metrics:
230
+ - type: v_measure
231
+ value: 43.79603865728535
232
+ - task:
233
+ type: Clustering
234
+ dataset:
235
+ type: mlsum
236
+ name: MTEB MLSUMClusteringS2S
237
+ config: default
238
+ split: test
239
+ revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
240
+ metrics:
241
+ - type: v_measure
242
+ value: 37.746550373003
243
+ - task:
244
+ type: Classification
245
+ dataset:
246
+ type: mteb/mtop_domain
247
+ name: MTEB MTOPDomainClassification (fr)
248
+ config: fr
249
+ split: test
250
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
251
+ metrics:
252
+ - type: accuracy
253
+ value: 89.26088318196052
254
+ - type: f1
255
+ value: 88.95811185929033
256
+ - task:
257
+ type: Classification
258
+ dataset:
259
+ type: mteb/mtop_intent
260
+ name: MTEB MTOPIntentClassification (fr)
261
+ config: fr
262
+ split: test
263
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
264
+ metrics:
265
+ - type: accuracy
266
+ value: 68.55308487316003
267
+ - type: f1
268
+ value: 48.2936682439785
269
+ - task:
270
+ type: Classification
271
+ dataset:
272
+ type: masakhane/masakhanews
273
+ name: MTEB MasakhaNEWSClassification (fra)
274
+ config: fra
275
+ split: test
276
+ revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
277
+ metrics:
278
+ - type: accuracy
279
+ value: 81.51658767772511
280
+ - type: f1
281
+ value: 77.695234448912
282
+ - task:
283
+ type: Clustering
284
+ dataset:
285
+ type: masakhane/masakhanews
286
+ name: MTEB MasakhaNEWSClusteringP2P (fra)
287
+ config: fra
288
+ split: test
289
+ revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
290
+ metrics:
291
+ - type: v_measure
292
+ value: 40.80377094681114
293
+ - task:
294
+ type: Clustering
295
+ dataset:
296
+ type: masakhane/masakhanews
297
+ name: MTEB MasakhaNEWSClusteringS2S (fra)
298
+ config: fra
299
+ split: test
300
+ revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
301
+ metrics:
302
+ - type: v_measure
303
+ value: 28.79703837416241
304
+ - task:
305
+ type: Classification
306
+ dataset:
307
+ type: mteb/amazon_massive_intent
308
+ name: MTEB MassiveIntentClassification (fr)
309
+ config: fr
310
+ split: test
311
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
312
+ metrics:
313
+ - type: accuracy
314
+ value: 67.40080699394755
315
+ - type: f1
316
+ value: 65.60793135686376
317
+ - task:
318
+ type: Classification
319
+ dataset:
320
+ type: mteb/amazon_massive_scenario
321
+ name: MTEB MassiveScenarioClassification (fr)
322
+ config: fr
323
+ split: test
324
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
325
+ metrics:
326
+ - type: accuracy
327
+ value: 71.29455279085406
328
+ - type: f1
329
+ value: 70.80876673828983
330
+ - task:
331
+ type: Retrieval
332
+ dataset:
333
+ type: jinaai/mintakaqa
334
+ name: MTEB MintakaRetrieval (fr)
335
+ config: fr
336
+ split: test
337
+ revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e
338
+ metrics:
339
+ - type: map_at_1
340
+ value: 16.625999999999998
341
+ - type: map_at_10
342
+ value: 25.224999999999998
343
+ - type: map_at_100
344
+ value: 26.291999999999998
345
+ - type: map_at_1000
346
+ value: 26.395000000000003
347
+ - type: map_at_3
348
+ value: 22.378999999999998
349
+ - type: map_at_5
350
+ value: 24.009
351
+ - type: mrr_at_1
352
+ value: 16.625999999999998
353
+ - type: mrr_at_10
354
+ value: 25.224999999999998
355
+ - type: mrr_at_100
356
+ value: 26.291999999999998
357
+ - type: mrr_at_1000
358
+ value: 26.395000000000003
359
+ - type: mrr_at_3
360
+ value: 22.378999999999998
361
+ - type: mrr_at_5
362
+ value: 24.009
363
+ - type: ndcg_at_1
364
+ value: 16.625999999999998
365
+ - type: ndcg_at_10
366
+ value: 30.074
367
+ - type: ndcg_at_100
368
+ value: 35.683
369
+ - type: ndcg_at_1000
370
+ value: 38.714999999999996
371
+ - type: ndcg_at_3
372
+ value: 24.188000000000002
373
+ - type: ndcg_at_5
374
+ value: 27.124
375
+ - type: precision_at_1
376
+ value: 16.625999999999998
377
+ - type: precision_at_10
378
+ value: 4.566
379
+ - type: precision_at_100
380
+ value: 0.729
381
+ - type: precision_at_1000
382
+ value: 0.097
383
+ - type: precision_at_3
384
+ value: 9.801
385
+ - type: precision_at_5
386
+ value: 7.305000000000001
387
+ - type: recall_at_1
388
+ value: 16.625999999999998
389
+ - type: recall_at_10
390
+ value: 45.659
391
+ - type: recall_at_100
392
+ value: 72.85000000000001
393
+ - type: recall_at_1000
394
+ value: 97.42
395
+ - type: recall_at_3
396
+ value: 29.402
397
+ - type: recall_at_5
398
+ value: 36.527
399
+ - task:
400
+ type: PairClassification
401
+ dataset:
402
+ type: paws-x
403
+ name: MTEB PawsX (fr)
404
+ config: fr
405
+ split: test
406
+ revision: 8a04d940a42cd40658986fdd8e3da561533a3646
407
+ metrics:
408
+ - type: cos_sim_accuracy
409
+ value: 60.6
410
+ - type: cos_sim_ap
411
+ value: 60.18915797975459
412
+ - type: cos_sim_f1
413
+ value: 62.491349480968864
414
+ - type: cos_sim_precision
415
+ value: 45.44539506794162
416
+ - type: cos_sim_recall
417
+ value: 100.0
418
+ - type: dot_accuracy
419
+ value: 60.6
420
+ - type: dot_ap
421
+ value: 60.091135216056024
422
+ - type: dot_f1
423
+ value: 62.491349480968864
424
+ - type: dot_precision
425
+ value: 45.44539506794162
426
+ - type: dot_recall
427
+ value: 100.0
428
+ - type: euclidean_accuracy
429
+ value: 60.6
430
+ - type: euclidean_ap
431
+ value: 60.18915797975459
432
+ - type: euclidean_f1
433
+ value: 62.491349480968864
434
+ - type: euclidean_precision
435
+ value: 45.44539506794162
436
+ - type: euclidean_recall
437
+ value: 100.0
438
+ - type: manhattan_accuracy
439
+ value: 60.650000000000006
440
+ - type: manhattan_ap
441
+ value: 60.2082343915352
442
+ - type: manhattan_f1
443
+ value: 62.491349480968864
444
+ - type: manhattan_precision
445
+ value: 45.44539506794162
446
+ - type: manhattan_recall
447
+ value: 100.0
448
+ - type: max_accuracy
449
+ value: 60.650000000000006
450
+ - type: max_ap
451
+ value: 60.2082343915352
452
+ - type: max_f1
453
+ value: 62.491349480968864
454
+ - task:
455
+ type: STS
456
+ dataset:
457
+ type: Lajavaness/SICK-fr
458
+ name: MTEB SICKFr
459
+ config: default
460
+ split: test
461
+ revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a
462
+ metrics:
463
+ - type: cos_sim_pearson
464
+ value: 79.77067200230256
465
+ - type: cos_sim_spearman
466
+ value: 76.7445532523278
467
+ - type: euclidean_pearson
468
+ value: 76.34017074673956
469
+ - type: euclidean_spearman
470
+ value: 76.7453011027832
471
+ - type: manhattan_pearson
472
+ value: 76.19578084197778
473
+ - type: manhattan_spearman
474
+ value: 76.56293456459228
475
+ - task:
476
+ type: STS
477
+ dataset:
478
+ type: mteb/sts22-crosslingual-sts
479
+ name: MTEB STS22 (fr)
480
+ config: fr
481
+ split: test
482
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
483
+ metrics:
484
+ - type: cos_sim_pearson
485
+ value: 81.2564160237984
486
+ - type: cos_sim_spearman
487
+ value: 83.30552085410882
488
+ - type: euclidean_pearson
489
+ value: 82.00494560507786
490
+ - type: euclidean_spearman
491
+ value: 83.30552085410882
492
+ - type: manhattan_pearson
493
+ value: 81.93132229157803
494
+ - type: manhattan_spearman
495
+ value: 83.04357992939353
496
+ - task:
497
+ type: STS
498
+ dataset:
499
+ type: stsb_multi_mt
500
+ name: MTEB STSBenchmarkMultilingualSTS (fr)
501
+ config: fr
502
+ split: test
503
+ revision: 93d57ef91790589e3ce9c365164337a8a78b7632
504
+ metrics:
505
+ - type: cos_sim_pearson
506
+ value: 80.34931905288978
507
+ - type: cos_sim_spearman
508
+ value: 79.99372771100049
509
+ - type: euclidean_pearson
510
+ value: 78.37976845123443
511
+ - type: euclidean_spearman
512
+ value: 79.99452356550658
513
+ - type: manhattan_pearson
514
+ value: 78.24434042082316
515
+ - type: manhattan_spearman
516
+ value: 79.87248340061164
517
+ - task:
518
+ type: Summarization
519
+ dataset:
520
+ type: lyon-nlp/summarization-summeval-fr-p2p
521
+ name: MTEB SummEvalFr
522
+ config: default
523
+ split: test
524
+ revision: b385812de6a9577b6f4d0f88c6a6e35395a94054
525
+ metrics:
526
+ - type: cos_sim_pearson
527
+ value: 30.476001473421586
528
+ - type: cos_sim_spearman
529
+ value: 29.687350195905456
530
+ - type: dot_pearson
531
+ value: 30.476000875190685
532
+ - type: dot_spearman
533
+ value: 29.662224660056562
534
+ - task:
535
+ type: Reranking
536
+ dataset:
537
+ type: lyon-nlp/mteb-fr-reranking-syntec-s2p
538
+ name: MTEB SyntecReranking
539
+ config: default
540
+ split: test
541
+ revision: b205c5084a0934ce8af14338bf03feb19499c84d
542
+ metrics:
543
+ - type: map
544
+ value: 88.28333333333333
545
+ - type: mrr
546
+ value: 88.28333333333333
547
+ - task:
548
+ type: Retrieval
549
+ dataset:
550
+ type: lyon-nlp/mteb-fr-retrieval-syntec-s2p
551
+ name: MTEB SyntecRetrieval
552
+ config: default
553
+ split: test
554
+ revision: 77f7e271bf4a92b24fce5119f3486b583ca016ff
555
+ metrics:
556
+ - type: map_at_1
557
+ value: 69.0
558
+ - type: map_at_10
559
+ value: 79.906
560
+ - type: map_at_100
561
+ value: 79.982
562
+ - type: map_at_1000
563
+ value: 79.982
564
+ - type: map_at_3
565
+ value: 77.667
566
+ - type: map_at_5
567
+ value: 79.51700000000001
568
+ - type: mrr_at_1
569
+ value: 69.0
570
+ - type: mrr_at_10
571
+ value: 79.906
572
+ - type: mrr_at_100
573
+ value: 79.982
574
+ - type: mrr_at_1000
575
+ value: 79.982
576
+ - type: mrr_at_3
577
+ value: 77.667
578
+ - type: mrr_at_5
579
+ value: 79.51700000000001
580
+ - type: ndcg_at_1
581
+ value: 69.0
582
+ - type: ndcg_at_10
583
+ value: 84.60499999999999
584
+ - type: ndcg_at_100
585
+ value: 84.868
586
+ - type: ndcg_at_1000
587
+ value: 84.868
588
+ - type: ndcg_at_3
589
+ value: 80.333
590
+ - type: ndcg_at_5
591
+ value: 83.647
592
+ - type: precision_at_1
593
+ value: 69.0
594
+ - type: precision_at_10
595
+ value: 9.9
596
+ - type: precision_at_100
597
+ value: 1.0
598
+ - type: precision_at_1000
599
+ value: 0.1
600
+ - type: precision_at_3
601
+ value: 29.333
602
+ - type: precision_at_5
603
+ value: 19.2
604
+ - type: recall_at_1
605
+ value: 69.0
606
+ - type: recall_at_10
607
+ value: 99.0
608
+ - type: recall_at_100
609
+ value: 100.0
610
+ - type: recall_at_1000
611
+ value: 100.0
612
+ - type: recall_at_3
613
+ value: 88.0
614
+ - type: recall_at_5
615
+ value: 96.0
616
+ - task:
617
+ type: Retrieval
618
+ dataset:
619
+ type: jinaai/xpqa
620
+ name: MTEB XPQARetrieval (fr)
621
+ config: fr
622
+ split: test
623
+ revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
624
+ metrics:
625
+ - type: map_at_1
626
+ value: 42.027
627
+ - type: map_at_10
628
+ value: 64.331
629
+ - type: map_at_100
630
+ value: 65.657
631
+ - type: map_at_1000
632
+ value: 65.7
633
+ - type: map_at_3
634
+ value: 57.967999999999996
635
+ - type: map_at_5
636
+ value: 62.33800000000001
637
+ - type: mrr_at_1
638
+ value: 65.688
639
+ - type: mrr_at_10
640
+ value: 72.263
641
+ - type: mrr_at_100
642
+ value: 72.679
643
+ - type: mrr_at_1000
644
+ value: 72.69099999999999
645
+ - type: mrr_at_3
646
+ value: 70.405
647
+ - type: mrr_at_5
648
+ value: 71.587
649
+ - type: ndcg_at_1
650
+ value: 65.688
651
+ - type: ndcg_at_10
652
+ value: 70.221
653
+ - type: ndcg_at_100
654
+ value: 74.457
655
+ - type: ndcg_at_1000
656
+ value: 75.178
657
+ - type: ndcg_at_3
658
+ value: 65.423
659
+ - type: ndcg_at_5
660
+ value: 67.05499999999999
661
+ - type: precision_at_1
662
+ value: 65.688
663
+ - type: precision_at_10
664
+ value: 16.208
665
+ - type: precision_at_100
666
+ value: 1.975
667
+ - type: precision_at_1000
668
+ value: 0.207
669
+ - type: precision_at_3
670
+ value: 39.831
671
+ - type: precision_at_5
672
+ value: 28.652
673
+ - type: recall_at_1
674
+ value: 42.027
675
+ - type: recall_at_10
676
+ value: 78.803
677
+ - type: recall_at_100
678
+ value: 95.051
679
+ - type: recall_at_1000
680
+ value: 99.75500000000001
681
+ - type: recall_at_3
682
+ value: 62.62799999999999
683
+ - type: recall_at_5
684
+ value: 70.975
685
  ---
686
 
687
  # Solon Embeddings — large 0.1