𦫠Beaver's Reward Model
Model Details
The Beaver reward model is a preference model trained using the PKU-SafeRLHF dataset. It can play a role in the safe RLHF algorithm, helping the Beaver model become more helpful.
- Developed by: the PKU-Alignment Team.
- Model Type: An auto-regressive language model based on the transformer architecture.
- License: Non-commercial license.
- Fine-tuned from model: LLaMA, Alpaca.
Model Sources
- Repository: https://github.com/PKU-Alignment/safe-rlhf
- Beaver: https://huggingface.co/PKU-Alignment/beaver-7b-v1.0
- Dataset: https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF
- Reward Model: https://huggingface.co/PKU-Alignment/beaver-7b-v1.0-reward
- Cost Model: https://huggingface.co/PKU-Alignment/beaver-7b-v1.0-cost
- Dataset Paper: https://arxiv.org/abs/2307.04657
- Paper: https://arxiv.org/abs/2310.12773
How to Use the Reward Model
import torch
from transformers import AutoTokenizer
from safe_rlhf.models import AutoModelForScore
model = AutoModelForScore.from_pretrained('PKU-Alignment/beaver-7b-v1.0-reward', torch_dtype=torch.bfloat16, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained('PKU-Alignment/beaver-7b-v1.0-reward')
input = 'BEGINNING OF CONVERSATION: USER: hello ASSISTANT:Hello! How can I help you today?'
input_ids = tokenizer(input, return_tensors='pt')
output = model(**input_ids)
print(output)
# ScoreModelOutput(
# scores=tensor([[[-19.7500],
# [-19.3750],
# [-20.1250],
# [-18.0000],
# [-20.0000],
# [-23.8750],
# [-23.5000],
# [-22.0000],
# [-21.0000],
# [-20.1250],
# [-23.7500],
# [-21.6250],
# [-21.7500],
# [-12.9375],
# [ -6.4375],
# [ -8.1250],
# [ -7.3438],
# [ -9.1875],
# [-13.6250],
# [-10.5625],
# [ -9.9375],
# [ -6.4375],
# [ -6.0938],
# [ -5.8438],
# [ -6.6562],
# [ -5.9688],
# [ -9.1875],
# [-11.4375]]], grad_fn=<ToCopyBackward0>),
# end_scores=tensor([[-11.4375]], grad_fn=<ToCopyBackward0>),
# last_hidden_state=tensor([[[ 0.7461, -0.6055, -0.4980, ..., 0.1670, 0.7812, -0.3242],
# [ 0.7383, -0.5391, -0.1836, ..., -0.1396, 0.5273, -0.2256],
# [ 0.6836, -0.7031, -0.3730, ..., 0.2100, 0.5000, -0.6328],
# ...,
# [-1.7969, 1.0234, 1.0234, ..., -0.8047, 0.2500, -0.8398],
# [ 2.0469, -1.3203, 0.8984, ..., -0.7734, -1.4141, -1.6797],
# [ 4.3438, -0.6953, 0.9648, ..., -0.1787, 0.6680, -3.0000]]],
# dtype=torch.bfloat16, grad_fn=<ToCopyBackward0>),
# end_last_hidden_state=tensor([[ 4.3438, -0.6953, 0.9648, ..., -0.1787, 0.6680, -3.0000]],
# dtype=torch.bfloat16, grad_fn=<ToCopyBackward0>),
# end_index=tensor([27])
# )
- Downloads last month
- 267