|
--- |
|
datasets: |
|
- PKU-Alignment/PKU-SafeRLHF |
|
language: |
|
- en |
|
tags: |
|
- reinforcement-learning-from-human-feedback |
|
- reinforcement-learning |
|
- beaver |
|
- safety |
|
- llama |
|
- ai-safety |
|
- deepspeed |
|
- rlhf |
|
- alpaca |
|
library_name: safe-rlhf |
|
--- |
|
|
|
# 🦫 Beaver's Cost Model |
|
|
|
## Model Details |
|
|
|
The Beaver cost model is a preference model trained using the [PKU-SafeRLHF](https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF) dataset. |
|
It can play a role in the safe RLHF algorithm, helping the Beaver model become more safe and harmless. |
|
|
|
- **Developed by:** the [PKU-Alignment](https://github.com/PKU-Alignment) Team. |
|
- **Model Type:** An auto-regressive language model based on the transformer architecture. |
|
- **License:** Non-commercial license. |
|
- **Fine-tuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca). |
|
|
|
## Model Sources |
|
|
|
- **Repository:** <https://github.com/PKU-Alignment/safe-rlhf> |
|
- **Beaver:** <https://huggingface.co/PKU-Alignment/beaver-7b-v2.0> |
|
- **Dataset:** <https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF> |
|
- **Reward Model:** <https://huggingface.co/PKU-Alignment/beaver-7b-v2.0-reward> |
|
- **Cost Model:** <https://huggingface.co/PKU-Alignment/beaver-7b-v2.0-cost> |
|
- **Dataset Paper:** <https://arxiv.org/abs/2307.04657> |
|
- **Paper:** <https://arxiv.org/abs/2310.12773> |
|
|
|
## How to Use the Cost Model |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer |
|
from safe_rlhf.models import AutoModelForScore |
|
|
|
model = AutoModelForScore.from_pretrained('PKU-Alignment/beaver-7b-v2.0-cost', torch_dtype=torch.bfloat16, device_map='auto') |
|
tokenizer = AutoTokenizer.from_pretrained('PKU-Alignment/beaver-7b-v2.0-cost') |
|
|
|
input = 'BEGINNING OF CONVERSATION: USER: hello ASSISTANT:Hello! How can I help you today?' |
|
|
|
input_ids = tokenizer(input, return_tensors='pt') |
|
output = model(**input_ids) |
|
print(output) |
|
|
|
# ScoreModelOutput( |
|
# scores=tensor([[[ 1.2031], |
|
# [ 2.0469], |
|
# [ 2.1875], |
|
# [ 2.0938], |
|
# [ 2.9219], |
|
# [ 2.2656], |
|
# [ 3.1250], |
|
# [ 2.4219], |
|
# [ 3.6406], |
|
# [ 2.4062], |
|
# [ 0.7383], |
|
# [ 0.6719], |
|
# [-0.4414], |
|
# [-1.2734], |
|
# [-1.6562], |
|
# [ 0.3340], |
|
# [ 0.2432], |
|
# [-0.6914], |
|
# [-1.0938], |
|
# [-1.9453], |
|
# [-3.0469], |
|
# [-2.7812], |
|
# [-2.2188], |
|
# [-1.6250], |
|
# [-1.5000], |
|
# [-1.9922], |
|
# [-2.6562], |
|
# [-9.4375]]], grad_fn=<ToCopyBackward0>), |
|
# end_scores=tensor([[-9.4375]], grad_fn=<ToCopyBackward0>), |
|
# last_hidden_state=tensor([[[ 7.4219e-02, 3.6865e-02, -2.4414e-01, ..., -5.7129e-02, |
|
# 1.1963e-01, 2.7734e-01], |
|
# [-7.0703e-01, 1.0234e+00, 9.8145e-02, ..., 2.6719e+00, |
|
# 8.2422e-01, 4.7119e-02], |
|
# [-1.5332e-01, 1.0938e+00, -5.0000e-01, ..., -1.6699e-01, |
|
# -6.0156e-01, 5.3516e-01], |
|
# ..., |
|
# [-1.0469e+00, 3.5858e-03, -1.1094e+00, ..., -1.1094e+00, |
|
# 9.2578e-01, 1.3750e+00], |
|
# [ 3.1445e-01, -9.7266e-01, -1.8984e+00, ..., -9.4141e-01, |
|
# 2.0703e-01, 9.4531e-01], |
|
# [ 5.5625e+00, -1.8672e+00, -1.3359e+00, ..., 8.0078e-01, |
|
# -1.8906e+00, -1.3516e+00]]], dtype=torch.bfloat16, |
|
# grad_fn=<ToCopyBackward0>), |
|
# end_last_hidden_state=tensor([[ 5.5625, -1.8672, -1.3359, ..., 0.8008, -1.8906, -1.3516]], |
|
# dtype=torch.bfloat16, grad_fn=<ToCopyBackward0>), |
|
# end_index=tensor([27]) |
|
# ) |
|
``` |
|
|