PyTorch
English
Chinese
plm
custom_code
daven3 commited on
Commit
bc17ed7
·
1 Parent(s): e1eaa8c

modified MLP

Browse files
Files changed (1) hide show
  1. modeling_edgellm.py +6 -936
modeling_edgellm.py CHANGED
@@ -366,8 +366,6 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
366
  return q_embed, k_embed
367
 
368
 
369
-
370
- # Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Edgellm
371
  class EdgellmMLP(nn.Module):
372
  def __init__(self, config):
373
  super().__init__()
@@ -375,15 +373,14 @@ class EdgellmMLP(nn.Module):
375
  self.intermediate_size = config.intermediate_size
376
  self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
377
  self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
378
- def squared_relu(x):
379
- return torch.pow(F.relu(x), 2)
380
- self.act_fn = squared_relu
381
 
382
  def forward(self, hidden_state):
383
- return self.down_proj(self.act_fn(self.up_proj(hidden_state)))
384
-
385
-
386
-
 
387
 
388
  # Copied from transformers.models.llama.modeling_llama.repeat_kv
389
  def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
@@ -398,418 +395,6 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
398
  return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
399
 
400
 
401
- # class EdgellmAttention(nn.Module):
402
- # """
403
- # Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
404
- # and "Generating Long Sequences with Sparse Transformers".
405
- # """
406
-
407
- # def __init__(self, config: EdgellmConfig, layer_idx: Optional[int] = None):
408
- # super().__init__()
409
- # self.config = config
410
- # self.layer_idx = layer_idx
411
- # if layer_idx is None:
412
- # logger.warning_once(
413
- # f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
414
- # "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
415
- # "when creating this class."
416
- # )
417
-
418
- # self.hidden_size = config.hidden_size
419
- # self.num_heads = config.num_attention_heads
420
- # self.head_dim = self.hidden_size // self.num_heads
421
- # self.num_key_value_heads = config.num_key_value_heads
422
- # self.num_key_value_groups = self.num_heads // self.num_key_value_heads
423
- # self.max_position_embeddings = config.max_position_embeddings
424
- # self.rope_theta = config.rope_theta
425
- # self.is_causal = True
426
- # self.attention_dropout = config.attention_dropout
427
-
428
- # if (self.head_dim * self.num_heads) != self.hidden_size:
429
- # raise ValueError(
430
- # f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
431
- # f" and `num_heads`: {self.num_heads})."
432
- # )
433
- # self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
434
- # self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
435
- # self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
436
- # self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
437
-
438
- # self.rotary_emb = EdgellmRotaryEmbedding(
439
- # self.head_dim,
440
- # max_position_embeddings=self.max_position_embeddings,
441
- # base=self.rope_theta,
442
- # )
443
-
444
- # def forward(
445
- # self,
446
- # hidden_states: torch.Tensor,
447
- # attention_mask: Optional[torch.Tensor] = None,
448
- # position_ids: Optional[torch.LongTensor] = None,
449
- # past_key_value: Optional[Cache] = None,
450
- # output_attentions: bool = False,
451
- # use_cache: bool = False,
452
- # cache_position: Optional[torch.LongTensor] = None,
453
- # ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
454
- # bsz, q_len, _ = hidden_states.size()
455
-
456
- # query_states = self.q_proj(hidden_states)
457
- # key_states = self.k_proj(hidden_states)
458
- # value_states = self.v_proj(hidden_states)
459
-
460
- # query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
461
- # key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
462
- # value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
463
-
464
- # kv_seq_len = key_states.shape[-2]
465
- # if past_key_value is not None:
466
- # if self.layer_idx is None:
467
- # raise ValueError(
468
- # f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
469
- # "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
470
- # "with a layer index."
471
- # )
472
- # kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
473
- # cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
474
- # query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
475
-
476
- # if past_key_value is not None:
477
- # cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
478
- # key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
479
-
480
- # # repeat k/v heads if n_kv_heads < n_heads
481
- # key_states = repeat_kv(key_states, self.num_key_value_groups)
482
- # value_states = repeat_kv(value_states, self.num_key_value_groups)
483
-
484
- # attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
485
-
486
- # if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
487
- # raise ValueError(
488
- # f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
489
- # f" {attn_weights.size()}"
490
- # )
491
-
492
- # if attention_mask is not None: # no matter the length, we just slice it
493
- # causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
494
- # attn_weights = attn_weights + causal_mask
495
-
496
- # # upcast attention to fp32
497
- # attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
498
- # attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
499
- # attn_output = torch.matmul(attn_weights, value_states)
500
-
501
- # if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
502
- # raise ValueError(
503
- # f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
504
- # f" {attn_output.size()}"
505
- # )
506
-
507
- # attn_output = attn_output.transpose(1, 2).contiguous()
508
- # attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
509
-
510
- # attn_output = self.o_proj(attn_output)
511
-
512
- # if not output_attentions:
513
- # attn_weights = None
514
-
515
- # return attn_output, attn_weights, past_key_value
516
-
517
-
518
- # class EdgellmFlashAttention2(EdgellmAttention):
519
- # """
520
- # Edgellm flash attention module, following Edgellm attention module. This module inherits from `EdgellmAttention`
521
- # as the weights of the module stays untouched. The only required change would be on the forward pass
522
- # where it needs to correctly call the public API of flash attention and deal with padding tokens
523
- # in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
524
- # config.max_window_layers layers.
525
- # """
526
-
527
- # # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
528
- # def __init__(self, *args, **kwargs):
529
- # super().__init__(*args, **kwargs)
530
-
531
- # # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
532
- # # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
533
- # # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
534
- # self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
535
-
536
- # def forward(
537
- # self,
538
- # hidden_states: torch.Tensor,
539
- # attention_mask: Optional[torch.Tensor] = None,
540
- # position_ids: Optional[torch.LongTensor] = None,
541
- # past_key_value: Optional[Cache] = None,
542
- # output_attentions: bool = False,
543
- # use_cache: bool = False,
544
- # cache_position: Optional[torch.LongTensor] = None,
545
- # ):
546
- # bsz, q_len, _ = hidden_states.size()
547
-
548
- # query_states = self.q_proj(hidden_states)
549
- # key_states = self.k_proj(hidden_states)
550
- # value_states = self.v_proj(hidden_states)
551
-
552
- # query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
553
- # key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
554
- # value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
555
-
556
- # kv_seq_len = key_states.shape[-2]
557
- # if past_key_value is not None:
558
- # if self.layer_idx is None:
559
- # raise ValueError(
560
- # f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
561
- # "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
562
- # "with a layer index."
563
- # )
564
- # kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
565
-
566
- # # Because the input can be padded, the absolute sequence length depends on the max position id.
567
- # rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
568
- # cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
569
-
570
- # query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
571
-
572
- # use_sliding_windows = (
573
- # _flash_supports_window_size
574
- # and getattr(self.config, "sliding_window", None) is not None
575
- # and kv_seq_len > self.config.sliding_window
576
- # and self.config.use_sliding_window
577
- # )
578
-
579
- # if not _flash_supports_window_size:
580
- # logger.warning_once(
581
- # "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
582
- # " make sure to upgrade flash-attn library."
583
- # )
584
-
585
- # if past_key_value is not None:
586
- # # Activate slicing cache only if the config has a value `sliding_windows` attribute
587
- # cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
588
- # if (
589
- # getattr(self.config, "sliding_window", None) is not None
590
- # and kv_seq_len > self.config.sliding_window
591
- # and cache_has_contents
592
- # ):
593
- # slicing_tokens = 1 - self.config.sliding_window
594
-
595
- # past_key = past_key_value[self.layer_idx][0]
596
- # past_value = past_key_value[self.layer_idx][1]
597
-
598
- # past_key = past_key[:, :, slicing_tokens:, :].contiguous()
599
- # past_value = past_value[:, :, slicing_tokens:, :].contiguous()
600
-
601
- # if past_key.shape[-2] != self.config.sliding_window - 1:
602
- # raise ValueError(
603
- # f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
604
- # f" {past_key.shape}"
605
- # )
606
-
607
- # if attention_mask is not None:
608
- # attention_mask = attention_mask[:, slicing_tokens:]
609
- # attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
610
-
611
- # cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
612
- # key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
613
-
614
- # # repeat k/v heads if n_kv_heads < n_heads
615
- # key_states = repeat_kv(key_states, self.num_key_value_groups)
616
- # value_states = repeat_kv(value_states, self.num_key_value_groups)
617
- # dropout_rate = 0.0 if not self.training else self.attention_dropout
618
-
619
- # # In PEFT, usually we cast the layer norms in float32 for training stability reasons
620
- # # therefore the input hidden states gets silently casted in float32. Hence, we need
621
- # # cast them back in float16 just to be sure everything works as expected.
622
- # input_dtype = query_states.dtype
623
- # if input_dtype == torch.float32:
624
- # if torch.is_autocast_enabled():
625
- # target_dtype = torch.get_autocast_gpu_dtype()
626
- # # Handle the case where the model is quantized
627
- # elif hasattr(self.config, "_pre_quantization_dtype"):
628
- # target_dtype = self.config._pre_quantization_dtype
629
- # else:
630
- # target_dtype = self.q_proj.weight.dtype
631
-
632
- # logger.warning_once(
633
- # f"The input hidden states seems to be silently casted in float32, this might be related to"
634
- # f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
635
- # f" {target_dtype}."
636
- # )
637
-
638
- # query_states = query_states.to(target_dtype)
639
- # key_states = key_states.to(target_dtype)
640
- # value_states = value_states.to(target_dtype)
641
-
642
- # # Reashape to the expected shape for Flash Attention
643
- # query_states = query_states.transpose(1, 2)
644
- # key_states = key_states.transpose(1, 2)
645
- # value_states = value_states.transpose(1, 2)
646
-
647
- # attn_output = self._flash_attention_forward(
648
- # query_states,
649
- # key_states,
650
- # value_states,
651
- # attention_mask,
652
- # q_len,
653
- # dropout=dropout_rate,
654
- # use_sliding_windows=use_sliding_windows,
655
- # )
656
-
657
- # attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
658
- # attn_output = self.o_proj(attn_output)
659
-
660
- # if not output_attentions:
661
- # attn_weights = None
662
-
663
- # return attn_output, attn_weights, past_key_value
664
-
665
- # def _flash_attention_forward(
666
- # self,
667
- # query_states,
668
- # key_states,
669
- # value_states,
670
- # attention_mask,
671
- # query_length,
672
- # dropout=0.0,
673
- # softmax_scale=None,
674
- # use_sliding_windows=False,
675
- # ):
676
- # """
677
- # Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
678
- # first unpad the input, then computes the attention scores and pad the final attention scores.
679
-
680
- # Args:
681
- # query_states (`torch.Tensor`):
682
- # Input query states to be passed to Flash Attention API
683
- # key_states (`torch.Tensor`):
684
- # Input key states to be passed to Flash Attention API
685
- # value_states (`torch.Tensor`):
686
- # Input value states to be passed to Flash Attention API
687
- # attention_mask (`torch.Tensor`):
688
- # The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
689
- # position of padding tokens and 1 for the position of non-padding tokens.
690
- # dropout (`float`):
691
- # Attention dropout
692
- # softmax_scale (`float`, *optional*):
693
- # The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
694
- # use_sliding_windows (`bool`, *optional*):
695
- # Whether to activate sliding window attention.
696
- # """
697
- # if not self._flash_attn_uses_top_left_mask:
698
- # causal = self.is_causal
699
- # else:
700
- # # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
701
- # causal = self.is_causal and query_length != 1
702
-
703
- # # Decide whether to use SWA or not by layer index.
704
- # if use_sliding_windows and self.layer_idx >= self.config.max_window_layers:
705
- # use_sliding_windows = False
706
-
707
- # # Contains at least one padding token in the sequence
708
- # if attention_mask is not None:
709
- # batch_size = query_states.shape[0]
710
- # query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
711
- # query_states, key_states, value_states, attention_mask, query_length
712
- # )
713
-
714
- # cu_seqlens_q, cu_seqlens_k = cu_seq_lens
715
- # max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
716
-
717
- # if not use_sliding_windows:
718
- # attn_output_unpad = flash_attn_varlen_func(
719
- # query_states,
720
- # key_states,
721
- # value_states,
722
- # cu_seqlens_q=cu_seqlens_q,
723
- # cu_seqlens_k=cu_seqlens_k,
724
- # max_seqlen_q=max_seqlen_in_batch_q,
725
- # max_seqlen_k=max_seqlen_in_batch_k,
726
- # dropout_p=dropout,
727
- # softmax_scale=softmax_scale,
728
- # causal=causal,
729
- # )
730
- # else:
731
- # attn_output_unpad = flash_attn_varlen_func(
732
- # query_states,
733
- # key_states,
734
- # value_states,
735
- # cu_seqlens_q=cu_seqlens_q,
736
- # cu_seqlens_k=cu_seqlens_k,
737
- # max_seqlen_q=max_seqlen_in_batch_q,
738
- # max_seqlen_k=max_seqlen_in_batch_k,
739
- # dropout_p=dropout,
740
- # softmax_scale=softmax_scale,
741
- # causal=causal,
742
- # window_size=(self.config.sliding_window, self.config.sliding_window),
743
- # )
744
-
745
- # attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
746
- # else:
747
- # if not use_sliding_windows:
748
- # attn_output = flash_attn_func(
749
- # query_states,
750
- # key_states,
751
- # value_states,
752
- # dropout,
753
- # softmax_scale=softmax_scale,
754
- # causal=causal,
755
- # )
756
- # else:
757
- # attn_output = flash_attn_func(
758
- # query_states,
759
- # key_states,
760
- # value_states,
761
- # dropout,
762
- # softmax_scale=softmax_scale,
763
- # causal=causal,
764
- # window_size=(self.config.sliding_window, self.config.sliding_window),
765
- # )
766
-
767
- # return attn_output
768
-
769
- # # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
770
- # def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
771
- # batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
772
-
773
- # # On the first iteration we need to properly re-create the padding mask
774
- # # by slicing it on the proper place
775
- # if kv_seq_len != attention_mask.shape[-1]:
776
- # attention_mask_num_tokens = attention_mask.shape[-1]
777
- # attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
778
-
779
- # indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
780
-
781
- # key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
782
- # value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
783
-
784
- # if query_length == kv_seq_len:
785
- # query_layer = index_first_axis(
786
- # query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
787
- # )
788
- # cu_seqlens_q = cu_seqlens_k
789
- # max_seqlen_in_batch_q = max_seqlen_in_batch_k
790
- # indices_q = indices_k
791
- # elif query_length == 1:
792
- # max_seqlen_in_batch_q = 1
793
- # cu_seqlens_q = torch.arange(
794
- # batch_size + 1, dtype=torch.int32, device=query_layer.device
795
- # ) # There is a memcpy here, that is very bad.
796
- # indices_q = cu_seqlens_q[:-1]
797
- # query_layer = query_layer.squeeze(1)
798
- # else:
799
- # # The -q_len: slice assumes left padding.
800
- # attention_mask = attention_mask[:, -query_length:]
801
- # query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
802
-
803
- # return (
804
- # query_layer,
805
- # key_layer,
806
- # value_layer,
807
- # indices_q,
808
- # (cu_seqlens_q, cu_seqlens_k),
809
- # (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
810
- # )
811
-
812
-
813
  # Copied from https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite/blob/main/modeling_deepseek.py
814
  # DeepseekV2Attention with DeepseekV2->Edgellm
815
 
@@ -1036,522 +621,7 @@ class EdgellmAttention(nn.Module):
1036
  attn_weights = None
1037
 
1038
  return attn_output, attn_weights, past_key_value
1039
- # class EdgellmAttention(nn.Module):
1040
- # """Multi-headed attention from 'Attention Is All You Need' paper"""
1041
-
1042
- # def __init__(self, config: EdgellmConfig, layer_idx: Optional[int] = None):
1043
- # super().__init__()
1044
- # self.config = config
1045
- # self.layer_idx = layer_idx
1046
- # if layer_idx is None:
1047
- # logger.warning_once(
1048
- # f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
1049
- # "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
1050
- # "when creating this class."
1051
- # )
1052
-
1053
- # self.attention_dropout = config.attention_dropout
1054
- # self.hidden_size = config.hidden_size
1055
- # self.num_heads = config.num_attention_heads
1056
-
1057
- # self.max_position_embeddings = config.max_position_embeddings
1058
- # self.rope_theta = config.rope_theta
1059
- # self.q_lora_rank = config.q_lora_rank
1060
- # self.qk_rope_head_dim = config.qk_rope_head_dim
1061
- # self.kv_lora_rank = config.kv_lora_rank
1062
- # self.v_head_dim = config.v_head_dim
1063
- # self.qk_nope_head_dim = config.qk_nope_head_dim
1064
- # self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
1065
-
1066
- # self.is_causal = True
1067
-
1068
- # if self.q_lora_rank is None:
1069
- # self.q_proj = nn.Linear(
1070
- # self.hidden_size, self.num_heads * self.q_head_dim, bias=False
1071
- # )
1072
- # else:
1073
- # self.q_a_proj = nn.Linear(
1074
- # self.hidden_size, config.q_lora_rank, bias=config.attention_bias
1075
- # )
1076
- # self.q_a_layernorm = EdgellmRMSNorm(config.q_lora_rank)
1077
- # self.q_b_proj = nn.Linear(
1078
- # config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
1079
- # )
1080
-
1081
- # self.kv_a_proj_with_mqa = nn.Linear(
1082
- # self.hidden_size,
1083
- # config.kv_lora_rank + config.qk_rope_head_dim,
1084
- # bias=config.attention_bias,
1085
- # )
1086
- # self.kv_a_layernorm = EdgellmRMSNorm(config.kv_lora_rank)
1087
- # self.kv_b_proj = nn.Linear(
1088
- # config.kv_lora_rank,
1089
- # self.num_heads
1090
- # * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
1091
- # bias=False,
1092
- # )
1093
-
1094
- # self.o_proj = nn.Linear(
1095
- # self.num_heads * self.v_head_dim,
1096
- # self.hidden_size,
1097
- # bias=config.attention_bias,
1098
- # )
1099
- # self._init_rope()
1100
-
1101
- # self.softmax_scale = self.q_head_dim ** (-0.5)
1102
- # if self.config.rope_scaling is not None:
1103
- # mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
1104
- # scaling_factor = self.config.rope_scaling["factor"]
1105
- # if mscale_all_dim:
1106
- # mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
1107
- # self.softmax_scale = self.softmax_scale * mscale * mscale
1108
-
1109
- # def _init_rope(self):
1110
- # if self.config.rope_scaling is None:
1111
- # self.rotary_emb = EdgellmRotaryEmbedding(
1112
- # self.qk_rope_head_dim,
1113
- # max_position_embeddings=self.max_position_embeddings,
1114
- # base=self.rope_theta,
1115
- # )
1116
- # else:
1117
- # scaling_type = self.config.rope_scaling["type"]
1118
- # scaling_factor = self.config.rope_scaling["factor"]
1119
- # if scaling_type == "linear":
1120
- # self.rotary_emb = EdgellmLinearScalingRotaryEmbedding(
1121
- # self.qk_rope_head_dim,
1122
- # max_position_embeddings=self.max_position_embeddings,
1123
- # scaling_factor=scaling_factor,
1124
- # base=self.rope_theta,
1125
- # )
1126
- # elif scaling_type == "dynamic":
1127
- # self.rotary_emb = EdgellmDynamicNTKScalingRotaryEmbedding(
1128
- # self.qk_rope_head_dim,
1129
- # max_position_embeddings=self.max_position_embeddings,
1130
- # scaling_factor=scaling_factor,
1131
- # base=self.rope_theta,
1132
- # )
1133
- # elif scaling_type == "yarn":
1134
- # kwargs = {
1135
- # key: self.config.rope_scaling[key]
1136
- # for key in [
1137
- # "original_max_position_embeddings",
1138
- # "beta_fast",
1139
- # "beta_slow",
1140
- # "mscale",
1141
- # "mscale_all_dim",
1142
- # ]
1143
- # if key in self.config.rope_scaling
1144
- # }
1145
- # self.rotary_emb = EdgellmYarnRotaryEmbedding(
1146
- # self.qk_rope_head_dim,
1147
- # max_position_embeddings=self.max_position_embeddings,
1148
- # scaling_factor=scaling_factor,
1149
- # base=self.rope_theta,
1150
- # **kwargs,
1151
- # )
1152
- # else:
1153
- # raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
1154
-
1155
- # def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
1156
- # return (
1157
- # tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim)
1158
- # .transpose(1, 2)
1159
- # .contiguous()
1160
- # )
1161
-
1162
- # def forward(
1163
- # self,
1164
- # hidden_states: torch.Tensor,
1165
- # attention_mask: Optional[torch.Tensor] = None,
1166
- # position_ids: Optional[torch.LongTensor] = None,
1167
- # past_key_value: Optional[Cache] = None,
1168
- # output_attentions: bool = False,
1169
- # use_cache: bool = False,
1170
- # **kwargs,
1171
- # ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
1172
- # if "padding_mask" in kwargs:
1173
- # warnings.warn(
1174
- # "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
1175
- # )
1176
- # torch.save(hidden_states, "hf-hidden_states.pt")
1177
- # bsz, q_len, _ = hidden_states.size()
1178
-
1179
- # if self.q_lora_rank is None:
1180
- # q = self.q_proj(hidden_states)
1181
- # else:
1182
- # q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
1183
- # q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
1184
- # q_nope, q_pe = torch.split(
1185
- # q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
1186
- # )
1187
-
1188
- # compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
1189
- # compressed_kv, k_pe = torch.split(
1190
- # compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
1191
- # )
1192
- # k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
1193
- # kv = (
1194
- # self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
1195
- # .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
1196
- # .transpose(1, 2)
1197
- # )
1198
-
1199
- # k_nope, value_states = torch.split(
1200
- # kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
1201
- # )
1202
- # kv_seq_len = value_states.shape[-2]
1203
- # if past_key_value is not None:
1204
- # if self.layer_idx is None:
1205
- # raise ValueError(
1206
- # f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
1207
- # "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
1208
- # "with a layer index."
1209
- # )
1210
- # kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
1211
-
1212
- # # torch.save(value_states, "./hf_value_states_rope.pt")
1213
- # # print(kv_seq_len)
1214
- # cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
1215
- # # torch.save(q_pe, "./hf_q_pe_1.pt")
1216
- # # torch.save(cos, "./hf-cos.pt")
1217
- # # torch.save(cos, "./hf-sin.pt")
1218
- # q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
1219
- # # torch.save(q_pe, "./hf_q_pe_2.pt")
1220
- # query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
1221
- # query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
1222
- # query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
1223
-
1224
- # key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
1225
- # key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
1226
- # key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
1227
- # if past_key_value is not None:
1228
- # cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
1229
- # key_states, value_states = past_key_value.update(
1230
- # key_states, value_states, self.layer_idx, cache_kwargs
1231
- # )
1232
- # # torch.save(query_states, "./hf-q.pt")
1233
- # # torch.save(key_states, "./hf-k.pt")
1234
- # # torch.save(value_states, "./hf-v.pt")
1235
- # # breakpoint()
1236
- # attn_weights = (
1237
- # torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale
1238
- # )
1239
-
1240
- # if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
1241
- # raise ValueError(
1242
- # f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
1243
- # f" {attn_weights.size()}"
1244
- # )
1245
- # assert attention_mask is not None
1246
- # if attention_mask is not None:
1247
- # if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
1248
- # raise ValueError(
1249
- # f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
1250
- # )
1251
- # attn_weights = attn_weights + attention_mask
1252
-
1253
- # # upcast attention to fp32
1254
- # attn_weights = nn.functional.softmax(
1255
- # attn_weights, dim=-1, dtype=torch.float32
1256
- # ).to(query_states.dtype)
1257
- # attn_weights = nn.functional.dropout(
1258
- # attn_weights, p=self.attention_dropout, training=self.training
1259
- # )
1260
- # attn_output = torch.matmul(attn_weights, value_states)
1261
-
1262
- # if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim):
1263
- # raise ValueError(
1264
- # f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is"
1265
- # f" {attn_output.size()}"
1266
- # )
1267
-
1268
- # attn_output = attn_output.transpose(1, 2).contiguous()
1269
-
1270
- # attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
1271
-
1272
- # attn_output = self.o_proj(attn_output)
1273
-
1274
- # if not output_attentions:
1275
- # attn_weights = None
1276
-
1277
- # return attn_output, attn_weights, past_key_value
1278
-
1279
 
1280
- # Copied from https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite/blob/main/modeling_deepseek.py
1281
- # DeepseekV2Attention with DeepseekV2->Edgellm
1282
- # class EdgellmFlashAttention2(EdgellmAttention):
1283
- # """
1284
- # Edgellm flash attention module. This module inherits from `EdgellmAttention` as the weights of the module stays
1285
- # untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
1286
- # flash attention and deal with padding tokens in case the input contains any of them.
1287
- # """
1288
-
1289
- # def __init__(self, *args, **kwargs):
1290
- # super().__init__(*args, **kwargs)
1291
-
1292
- # # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
1293
- # # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
1294
- # # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
1295
- # self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
1296
-
1297
- # def forward(
1298
- # self,
1299
- # hidden_states: torch.Tensor,
1300
- # attention_mask: Optional[torch.LongTensor] = None,
1301
- # position_ids: Optional[torch.LongTensor] = None,
1302
- # past_key_value: Optional[Cache] = None,
1303
- # output_attentions: bool = False,
1304
- # use_cache: bool = False,
1305
- # **kwargs,
1306
- # ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
1307
- # # EdgellmFlashAttention2 attention does not support output_attentions
1308
- # if "padding_mask" in kwargs:
1309
- # warnings.warn(
1310
- # "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
1311
- # )
1312
-
1313
- # # overwrite attention_mask with padding_mask
1314
- # attention_mask = kwargs.pop("padding_mask")
1315
-
1316
- # output_attentions = False
1317
-
1318
- # bsz, q_len, _ = hidden_states.size()
1319
-
1320
- # if self.q_lora_rank is None:
1321
- # q = self.q_proj(hidden_states)
1322
- # else:
1323
- # q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
1324
- # q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
1325
- # q_nope, q_pe = torch.split(
1326
- # q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
1327
- # )
1328
-
1329
- # # Flash attention requires the input to have the shape
1330
- # # batch_size x seq_length x head_dim x hidden_dim
1331
- # # therefore we just need to keep the original shape
1332
- # compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
1333
- # compressed_kv, k_pe = torch.split(
1334
- # compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
1335
- # )
1336
- # k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
1337
- # kv = (
1338
- # self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
1339
- # .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
1340
- # .transpose(1, 2)
1341
- # )
1342
-
1343
- # k_nope, value_states = torch.split(
1344
- # kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
1345
- # )
1346
- # kv_seq_len = value_states.shape[-2]
1347
-
1348
- # kv_seq_len = value_states.shape[-2]
1349
- # if past_key_value is not None:
1350
- # kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
1351
-
1352
- # cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
1353
- # q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
1354
-
1355
- # query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
1356
- # query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
1357
- # query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
1358
-
1359
- # key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
1360
- # key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
1361
- # key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
1362
-
1363
- # if self.q_head_dim != self.v_head_dim:
1364
- # value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
1365
-
1366
- # if past_key_value is not None:
1367
- # cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
1368
- # key_states, value_states = past_key_value.update(
1369
- # key_states, value_states, self.layer_idx, cache_kwargs
1370
- # )
1371
-
1372
- # # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
1373
- # # to be able to avoid many of these transpose/reshape/view.
1374
- # query_states = query_states.transpose(1, 2)
1375
- # key_states = key_states.transpose(1, 2)
1376
- # value_states = value_states.transpose(1, 2)
1377
-
1378
- # dropout_rate = self.attention_dropout if self.training else 0.0
1379
-
1380
- # # In PEFT, usually we cast the layer norms in float32 for training stability reasons
1381
- # # therefore the input hidden states gets silently casted in float32. Hence, we need
1382
- # # cast them back in the correct dtype just to be sure everything works as expected.
1383
- # # This might slowdown training & inference so it is recommended to not cast the LayerNorms
1384
- # # in fp32. (EdgellmRMSNorm handles it correctly)
1385
-
1386
- # input_dtype = query_states.dtype
1387
- # if input_dtype == torch.float32:
1388
- # # Handle the case where the model is quantized
1389
- # if hasattr(self.config, "_pre_quantization_dtype"):
1390
- # target_dtype = self.config._pre_quantization_dtype
1391
- # elif torch.is_autocast_enabled():
1392
- # target_dtype = torch.get_autocast_gpu_dtype()
1393
- # else:
1394
- # target_dtype = (
1395
- # self.q_proj.weight.dtype
1396
- # if self.q_lora_rank is None
1397
- # else self.q_a_proj.weight.dtype
1398
- # )
1399
-
1400
- # logger.warning_once(
1401
- # f"The input hidden states seems to be silently casted in float32, this might be related to"
1402
- # f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
1403
- # f" {target_dtype}."
1404
- # )
1405
-
1406
- # query_states = query_states.to(target_dtype)
1407
- # key_states = key_states.to(target_dtype)
1408
- # value_states = value_states.to(target_dtype)
1409
-
1410
- # attn_output = self._flash_attention_forward(
1411
- # query_states,
1412
- # key_states,
1413
- # value_states,
1414
- # attention_mask,
1415
- # q_len,
1416
- # dropout=dropout_rate,
1417
- # softmax_scale=self.softmax_scale,
1418
- # )
1419
- # if self.q_head_dim != self.v_head_dim:
1420
- # attn_output = attn_output[:, :, :, : self.v_head_dim]
1421
-
1422
- # attn_output = attn_output.reshape(
1423
- # bsz, q_len, self.num_heads * self.v_head_dim
1424
- # ).contiguous()
1425
- # attn_output = self.o_proj(attn_output)
1426
-
1427
- # if not output_attentions:
1428
- # attn_weights = None
1429
-
1430
- # return attn_output, attn_weights, past_key_value
1431
-
1432
- # def _flash_attention_forward(
1433
- # self,
1434
- # query_states,
1435
- # key_states,
1436
- # value_states,
1437
- # attention_mask,
1438
- # query_length,
1439
- # dropout=0.0,
1440
- # softmax_scale=None,
1441
- # ):
1442
- # """
1443
- # Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
1444
- # first unpad the input, then computes the attention scores and pad the final attention scores.
1445
- # Args:
1446
- # query_states (`torch.Tensor`):
1447
- # Input query states to be passed to Flash Attention API
1448
- # key_states (`torch.Tensor`):
1449
- # Input key states to be passed to Flash Attention API
1450
- # value_states (`torch.Tensor`):
1451
- # Input value states to be passed to Flash Attention API
1452
- # attention_mask (`torch.Tensor`):
1453
- # The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
1454
- # position of padding tokens and 1 for the position of non-padding tokens.
1455
- # dropout (`int`, *optional*):
1456
- # Attention dropout
1457
- # softmax_scale (`float`, *optional*):
1458
- # The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
1459
- # """
1460
- # if not self._flash_attn_uses_top_left_mask:
1461
- # causal = self.is_causal
1462
- # else:
1463
- # # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in EdgellmFlashAttention2 __init__.
1464
- # causal = self.is_causal and query_length != 1
1465
-
1466
- # # Contains at least one padding token in the sequence
1467
- # if attention_mask is not None:
1468
- # batch_size = query_states.shape[0]
1469
- # (
1470
- # query_states,
1471
- # key_states,
1472
- # value_states,
1473
- # indices_q,
1474
- # cu_seq_lens,
1475
- # max_seq_lens,
1476
- # ) = self._upad_input(
1477
- # query_states, key_states, value_states, attention_mask, query_length
1478
- # )
1479
-
1480
- # cu_seqlens_q, cu_seqlens_k = cu_seq_lens
1481
- # max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
1482
-
1483
- # attn_output_unpad = flash_attn_varlen_func(
1484
- # query_states,
1485
- # key_states,
1486
- # value_states,
1487
- # cu_seqlens_q=cu_seqlens_q,
1488
- # cu_seqlens_k=cu_seqlens_k,
1489
- # max_seqlen_q=max_seqlen_in_batch_q,
1490
- # max_seqlen_k=max_seqlen_in_batch_k,
1491
- # dropout_p=dropout,
1492
- # softmax_scale=softmax_scale,
1493
- # causal=causal,
1494
- # )
1495
-
1496
- # attn_output = pad_input(
1497
- # attn_output_unpad, indices_q, batch_size, query_length
1498
- # )
1499
- # else:
1500
- # attn_output = flash_attn_func(
1501
- # query_states,
1502
- # key_states,
1503
- # value_states,
1504
- # dropout,
1505
- # softmax_scale=softmax_scale,
1506
- # causal=causal,
1507
- # )
1508
-
1509
- # return attn_output
1510
-
1511
- # def _upad_input(
1512
- # self, query_layer, key_layer, value_layer, attention_mask, query_length
1513
- # ):
1514
- # indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
1515
- # batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
1516
-
1517
- # key_layer = index_first_axis(
1518
- # key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1519
- # indices_k,
1520
- # )
1521
- # value_layer = index_first_axis(
1522
- # value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1523
- # indices_k,
1524
- # )
1525
- # if query_length == kv_seq_len:
1526
- # query_layer = index_first_axis(
1527
- # query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
1528
- # indices_k,
1529
- # )
1530
- # cu_seqlens_q = cu_seqlens_k
1531
- # max_seqlen_in_batch_q = max_seqlen_in_batch_k
1532
- # indices_q = indices_k
1533
- # elif query_length == 1:
1534
- # max_seqlen_in_batch_q = 1
1535
- # cu_seqlens_q = torch.arange(
1536
- # batch_size + 1, dtype=torch.int32, device=query_layer.device
1537
- # ) # There is a memcpy here, that is very bad.
1538
- # indices_q = cu_seqlens_q[:-1]
1539
- # query_layer = query_layer.squeeze(1)
1540
- # else:
1541
- # # The -q_len: slice assumes left padding.
1542
- # attention_mask = attention_mask[:, -query_length:]
1543
- # query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
1544
- # query_layer, attention_mask
1545
- # )
1546
-
1547
- # return (
1548
- # query_layer,
1549
- # key_layer,
1550
- # value_layer,
1551
- # indices_q,
1552
- # (cu_seqlens_q, cu_seqlens_k),
1553
- # (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
1554
- # )
1555
 
1556
  class EdgellmFlashAttention2(EdgellmAttention):
1557
  """
 
366
  return q_embed, k_embed
367
 
368
 
 
 
369
  class EdgellmMLP(nn.Module):
370
  def __init__(self, config):
371
  super().__init__()
 
373
  self.intermediate_size = config.intermediate_size
374
  self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
375
  self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
376
+ self.act_fn = ACT2FN[config.hidden_act]
 
 
377
 
378
  def forward(self, hidden_state):
379
+ h = self.up_proj(hidden_state)
380
+ h = self.act_fn(h)
381
+ h = self.down_proj(h)
382
+ return h
383
+
384
 
385
  # Copied from transformers.models.llama.modeling_llama.repeat_kv
386
  def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
 
395
  return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
396
 
397
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
398
  # Copied from https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite/blob/main/modeling_deepseek.py
399
  # DeepseekV2Attention with DeepseekV2->Edgellm
400
 
 
621
  attn_weights = None
622
 
623
  return attn_output, attn_weights, past_key_value
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
625
 
626
  class EdgellmFlashAttention2(EdgellmAttention):
627
  """