Whisper-Small En-10h

This model is a fine-tuned version of openai/whisper-small on the librispeech dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1307
  • Wer: 3.9809

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.525 0.5556 100 0.7431 3.4571
0.382 1.1111 200 0.5645 3.4836
0.1704 1.6667 300 0.2111 4.0237
0.0953 2.2222 400 0.1527 4.1114
0.0904 2.7778 500 0.1404 4.0400
0.0784 3.3333 600 0.1355 4.0482
0.0793 3.8889 700 0.1331 3.9768
0.0776 4.4444 800 0.1318 3.9646
0.0629 5.0 900 0.1310 3.9830
0.0746 5.5556 1000 0.1307 3.9809

Framework versions

  • Transformers 4.41.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
16
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Pageee/FT-English-10ha

Finetuned
(2162)
this model

Dataset used to train Pageee/FT-English-10ha

Collection including Pageee/FT-English-10ha

Evaluation results