metadata
base_model: meta-llama/Meta-Llama-3-8B-Instruct
library_name: peft
license: llama3
tags:
- trl
- kto
- generated_from_trainer
model-index:
- name: kto-aligned-model-lora
results: []
kto-aligned-model-lora
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4990
- Eval/rewards/chosen: 0.1561
- Eval/logps/chosen: -0.6624
- Eval/rewards/rejected: 0.1281
- Eval/logps/rejected: -1.9415
- Eval/rewards/margins: 0.0281
- Eval/kl: 1.5643
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 12
- total_train_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | |
---|---|---|---|---|
0.4994 | 0.9057 | 8 | 0.4997 | 0.8856 |
0.5 | 1.9245 | 17 | 0.4994 | 1.5546 |
0.501 | 2.9434 | 26 | 0.4992 | 1.5634 |
0.5004 | 3.9623 | 35 | 0.4991 | 1.5675 |
0.4999 | 4.5283 | 40 | 0.4990 | 1.5643 |
Framework versions
- PEFT 0.11.1
- Transformers 4.42.2
- Pytorch 2.2.0
- Datasets 2.20.0
- Tokenizers 0.19.1