|
--- |
|
base_model: instructlab/merlinite-7b-lab |
|
library_name: peft |
|
license: apache-2.0 |
|
tags: |
|
- trl |
|
- sft |
|
model-index: |
|
- name: merlinite-sql-7b-thai-instructlab |
|
results: [] |
|
language: |
|
- th |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# merlinite-sql-7b-thai-instructlab |
|
|
|
This model is a fine-tuned version of [instructlab/merlinite-7b-lab](https://huggingface.co/instructlab/merlinite-7b-lab) on an unknown dataset. |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## How to Use |
|
installing dependencies |
|
```bash |
|
!pip install -qU transformers accelerate |
|
``` |
|
|
|
To implement the model |
|
```python |
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
question = "คะแนนความสามารถทางการเงินสูงสุดสำหรับลูกค้าในแอฟริกาในปี 2022 คือเท่าใด \nHere is a Table: CREATE TABLE financial_capability (id INT, customer_name VARCHAR(50), region VARCHAR(50), score INT, year INT); INSERT INTO financial_capability (id, customer_name, region, score, year) VALUES (1, 'Thabo', 'Africa', 9, 2022), (2, 'Amina', 'Africa', 8, 2022);" |
|
|
|
model = "Pavarissy/merlinite-sql-7b-thai-instructlab" |
|
messages = [{"role": "user", |
|
"content": f"{question}"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
# this is model generation part |
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.42.3 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |