Layouttest
This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9183
- F1: 0.7396
- Recall: 0.7132
- Precision: 0.7681
- Pred Bestellnummer: 148
- Percentage Pred Act Bestellnummer: 1.0350
- Pred Kundennr.: 49
- Percentage Pred Act Kundennr.: 1.0208
- Pred Bezug 1: 26
- Percentage Pred Act Bezug 1: 1.8571
- Pred Modell 1: 115
- Percentage Pred Act Modell 1: 1.1616
- Pred Menge1: 35
- Percentage Pred Act Menge1: 1.6667
- Pred Menge4: 5
- Percentage Pred Act Menge4: 0.5
- Pred Möbelhaus: 97
- Percentage Pred Act Möbelhaus: 1.0659
- Pred Termin kundenwunsch - kw: 28
- Percentage Pred Act Termin kundenwunsch - kw: 0.875
- Pred Kommission: 53
- Percentage Pred Act Kommission: 0.9138
- Pred Holz 1: 23
- Percentage Pred Act Holz 1: 1.2105
- Pred Menge2: 17
- Percentage Pred Act Menge2: 0.9444
- Pred Modell 2: 64
- Percentage Pred Act Modell 2: 1.0323
- Pred Zusatz 1: 14
- Percentage Pred Act Zusatz 1: 1.0
- Pred La-anschrift: 5
- Percentage Pred Act La-anschrift: 0.8333
- Pred Holz 2: 30
- Percentage Pred Act Holz 2: 1.4286
- Pred Menge3: 13
- Percentage Pred Act Menge3: 0.5909
- Pred Modell 3: 71
- Percentage Pred Act Modell 3: 1.0758
- Pred Bezug 4: 1
- Percentage Pred Act Bezug 4: 0.1429
- Pred Bezug 3: 11
- Percentage Pred Act Bezug 3: 2.75
- Pred Var-ausf 1: 4
- Percentage Pred Act Var-ausf 1: 0.5
- Act Bestellnummer: 143
- Act Kundennr.: 48
- Act Bezug 1: 14
- Act Modell 1: 99
- Act Menge1: 21
- Act Menge4: 10
- Act Möbelhaus: 91
- Act Bezug 2: 13
- Act Zusatz 2: 1
- Act Termin kundenwunsch - kw: 32
- Act Kommission: 58
- Act Holz 1: 19
- Act Menge3: 22
- Act Modell 2: 62
- Act Modell 3: 66
- Act Modell 4: 6
- Act Bezug 4: 7
- Act Zusatz 3: 1
- Act Holz 2: 21
- Act Menge2: 18
- Act Bezug 3: 4
- Act Var-ausf 1: 8
- Act Holz 3: 5
- Act Zusatz 1: 14
- Act Var-ausf. 2: 7
- Act Var-ausf. 3: 4
- Act Pv 3: 1
- Act Holz 4: 1
- Act Var-ausf. 5: 1
- Act Modell 5: 5
- Act La-anschrift: 6
- Act Menge5: 1
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Framework versions
- Transformers 4.53.0.dev0
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for PeanutCoding/Layouttest
Base model
microsoft/layoutlm-base-uncased