Layouttest

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9183
  • F1: 0.7396
  • Recall: 0.7132
  • Precision: 0.7681
  • Pred Bestellnummer: 148
  • Percentage Pred Act Bestellnummer: 1.0350
  • Pred Kundennr.: 49
  • Percentage Pred Act Kundennr.: 1.0208
  • Pred Bezug 1: 26
  • Percentage Pred Act Bezug 1: 1.8571
  • Pred Modell 1: 115
  • Percentage Pred Act Modell 1: 1.1616
  • Pred Menge1: 35
  • Percentage Pred Act Menge1: 1.6667
  • Pred Menge4: 5
  • Percentage Pred Act Menge4: 0.5
  • Pred Möbelhaus: 97
  • Percentage Pred Act Möbelhaus: 1.0659
  • Pred Termin kundenwunsch - kw: 28
  • Percentage Pred Act Termin kundenwunsch - kw: 0.875
  • Pred Kommission: 53
  • Percentage Pred Act Kommission: 0.9138
  • Pred Holz 1: 23
  • Percentage Pred Act Holz 1: 1.2105
  • Pred Menge2: 17
  • Percentage Pred Act Menge2: 0.9444
  • Pred Modell 2: 64
  • Percentage Pred Act Modell 2: 1.0323
  • Pred Zusatz 1: 14
  • Percentage Pred Act Zusatz 1: 1.0
  • Pred La-anschrift: 5
  • Percentage Pred Act La-anschrift: 0.8333
  • Pred Holz 2: 30
  • Percentage Pred Act Holz 2: 1.4286
  • Pred Menge3: 13
  • Percentage Pred Act Menge3: 0.5909
  • Pred Modell 3: 71
  • Percentage Pred Act Modell 3: 1.0758
  • Pred Bezug 4: 1
  • Percentage Pred Act Bezug 4: 0.1429
  • Pred Bezug 3: 11
  • Percentage Pred Act Bezug 3: 2.75
  • Pred Var-ausf 1: 4
  • Percentage Pred Act Var-ausf 1: 0.5
  • Act Bestellnummer: 143
  • Act Kundennr.: 48
  • Act Bezug 1: 14
  • Act Modell 1: 99
  • Act Menge1: 21
  • Act Menge4: 10
  • Act Möbelhaus: 91
  • Act Bezug 2: 13
  • Act Zusatz 2: 1
  • Act Termin kundenwunsch - kw: 32
  • Act Kommission: 58
  • Act Holz 1: 19
  • Act Menge3: 22
  • Act Modell 2: 62
  • Act Modell 3: 66
  • Act Modell 4: 6
  • Act Bezug 4: 7
  • Act Zusatz 3: 1
  • Act Holz 2: 21
  • Act Menge2: 18
  • Act Bezug 3: 4
  • Act Var-ausf 1: 8
  • Act Holz 3: 5
  • Act Zusatz 1: 14
  • Act Var-ausf. 2: 7
  • Act Var-ausf. 3: 4
  • Act Pv 3: 1
  • Act Holz 4: 1
  • Act Var-ausf. 5: 1
  • Act Modell 5: 5
  • Act La-anschrift: 6
  • Act Menge5: 1

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Framework versions

  • Transformers 4.53.0.dev0
  • Pytorch 2.7.0+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
3
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for PeanutCoding/Layouttest

Finetuned
(175)
this model