Midjourney-API / README.md
PiAPI's picture
Update README.md
078bad7 verified
---
license: mit
---
# Midjourney API
**Model Page:** [Midjourney API](https://piapi.ai/midjourney-api)
This model card illustartes the steps to use Midjourney API's endpoint.
You can also check out other model cards:
- [Faceswap API](https://huggingface.co/PiAPI/Faceswap-API)
- [Suno API](https://huggingface.co/PiAPI/Suno-API)
- [Dream Machine API](https://huggingface.co/PiAPI/Dream-Machine-API)
**Model Information**
Renowned for its exceptional text-to-image generative AI capabilities, Midjourney is a preferred tool among graphic designers, photographers, and creatives aiming to explore AI-driven artistry. Despite the absence of an official API from Midjourney, PiAPI has introduced the unofficial Midjourney API, empowering developers to incorporate this cutting-edge text-to-image model into their AI applications.
## Usage Steps
Below we share the code snippets on how to use Midjourney API's upscale endpoint.
- The programming language is Python
- The origin task ID should be the task ID of the fetched imagine endpoint
**Create an upscale task ID**
<pre><code class="language-python">
<span class="hljs-keyword">import</span> http.client
conn = http.client.HTTPSConnection(<span class="hljs-string">"api.piapi.ai"</span>)
payload = <span class="hljs-string">"{\n \"origin_task_id\": \"9c6796dd*********1e7dfef5203b\",\n \"index\": \"1\",\n \"webhook_endpoint\": \"\",\n \"webhook_secret\": \"\"\n}"</span>
headers = {
<span class="hljs-built_in">'X-API-Key': "{{x-api-key}}"</span>, //Insert your API Key here
<span class="hljs-built_in">'Content-Type': "application/json"</span>,
<span class="hljs-built_in">'Accept': "application/json"</span>
}
conn.request("POST", "/mj/v2/upscale", payload, headers)
res = conn.getresponse()
data = res.read()
<span class="hljs-keyword">print</span>(data.decode("utf-8"))
</code></pre>
**Retrieve the task ID**
<pre><code class="language-python">
{
<span class="hljs-built_in">"code"</span>: 200,
<span class="hljs-built_in">"data"</span>: {
<span class="hljs-built_in">"task_id"</span>: :3be7e0b0****************d1a725da0b1d" //Record the taskID provided in your response terminal
},
<span class="hljs-built_in">"message"</span>: "success"
}
</code></pre>
**Insert the upscale task ID into the fetch endpoint**
<pre><code class="language-python">
<span class="hljs-keyword">import</span> http.client
conn = http.client.HTTPSConnection(<span class="hljs-string">"api.piapi.ai"</span>)
payload = <span class="hljs-string">"{\n \"task_id\": \"3be7e0b0****************d1a725da0b1d\"\n}"</span> /Replace the task ID with your task ID
headers = {
<span class="hljs-built_in">'Content-Type': "application/json"</span>,
<span class="hljs-built_in">'Accept': "application/json"</span>
}
conn.request("POST", "/mj/v2/fetch", payload, headers)
res = conn.getresponse()
data = res.read()
<span class="hljs-keyword">print</span>(data.decode("utf-8"))
</code></pre>
**For fetch endpoint responses** - Refer to our [documentation](https://piapi.ai/docs/midjourney-api/upscale) for more detailed information.
<br>
## Contact us
Contact us at <a href="mailto:[email protected]">[email protected]</a> for any inquires.
<br>