File size: 5,187 Bytes
eda43d3 ea385eb eda43d3 ea385eb eda43d3 ea385eb eda43d3 ea385eb eda43d3 ea385eb eda43d3 ea385eb eda43d3 c9742ff 039d3dc e1638e4 ea385eb eda43d3 ea385eb eda43d3 ea385eb eda43d3 ea385eb eda43d3 ea385eb eda43d3 ea385eb eda43d3 ea385eb c9742ff ea385eb eda43d3 ea385eb c9742ff ea385eb eda43d3 ea385eb c9742ff ea385eb eda43d3 ea385eb eda43d3 d05983f c9742ff ea385eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
---
license: apache-2.0
language:
- en
metrics:
- accuracy
tags:
- api
- open-api
- swagger
- api doc
- api call
- code
- instruction_tuned
- basemodel
- pytorch
- RL Tuned
- text-generation-inferenc
library_name: transformers
pipeline_tag: text-generation
---
# pip-api-expert
[pipableAi](https://pipable.ai/)
[colab_notebook]()
## What have we built?
A 1.3 bn state of the art model for api calling , documentation, testing management.
The tasks that the model can accomplish are the following.
```markdown
1. Convert any bad format text to open api format.
2. Convert any bad format text to mark down format.
3. Given docs and questions in natural language, generate api calls in python.
```
## How we built it?
We used a simulator and a form of policy gradient to train the model to self instruct itself to make documents and then perform executable calls on the document.
## License
The model is open source under apache 2.0. License
## Usage
### Installation
```bash
pip install transformers
pip install accelerate
```
### Prompt
```python
prompt = f"""<question>{}</question>
<doc/code/any tag that explains the task at hand>"""
```
### PyTorch
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from accelerate import Accelerator
import torch
path = "PipableAI/pip-api-expert"
model =AutoModelForCausalLM.from_pretrained(path,torch_dtype=torch.bfloat16,device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(path)
prompt = "<question>Perform api call to do task k</question><python_code>"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=1200)
doc = (
tokenizer.decode(outputs[0][inputs.input_ids.shape[-1]:], skip_special_tokens=True)
)
print(doc)
```
## Examples
### markdown documentation format for api docs
```python
swagger_docs = """
Method access
HTTP
JavaScript
Python
Java
POST
https://slack.com/api/chat.postMessage
Required scopes
Bot tokens
chat:write
User tokens
chat:write
chat:write:user
chat:write:bot
Legacy bot tokens
bot
Content types
application/x-www-form-urlencoded
application/json
Rate limits
Special
Arguments
Required arguments
token
token
·Required
Authentication token bearing required scopes. Tokens should be passed as an HTTP Authorization header or alternatively, as a POST parameter.
Example
xxxx-xxxxxxxxx-xxxx
channel
string
·Required
Channel, private group, or IM channel to send message to. Can be an encoded ID, or a name. See below for more details.
Example
C1234567890
At least one of
attachmentsblockstext
One of these arguments is required to describe the content of the message. If attachments or blocks are included, text will be used as fallback text for notifications only.
attachments
string
blocks
blocks[] as string
text
string
How this field works and whether it is required depends on other fields you use in your API call. See below for more detail.
Example
Hello world
Optional arguments
as_user
boolean
·Optional
(Legacy) Pass true to post the message as the authed user instead of as a bot. Defaults to false. Can only be used by classic Slack apps. See authorship below.
Example
true
icon_emoji
string
·Optional
Emoji to use as the icon for this message. Overrides icon_url.
Example
:chart_with_upwards_trend:
icon_url
string
·Optional
URL to an image to use as the icon for this message.
Example
http://lorempixel.com/48/48
link_names
boolean
·Optional
Find and link user groups. No longer supports linking individual users; use syntax shown in Mentioning Users instead.
Example
true
metadata
string
·Optional
JSON object with event_type and event_payload fields, presented as a URL-encoded string. Metadata you post to Slack is accessible to any app or user who is a member of that workspace.
Example
{"event_type": "task_created", "event_payload": { "id": "11223", "title": "Redesign Homepage"}}
mrkdwn
boolean
·Optional
Disable Slack markup parsing by setting to false. Enabled by default.
Default
true
Example
false
parse
string
·Optional
Change how messages are treated. See below.
Example
full
reply_broadcast
boolean
·Optional
Used in conjunction with thread_ts and indicates whether reply should be made visible to everyone in the channel or conversation. Defaults to false.
Example
true
thread_ts
string
·Optional
Provide another message's ts value to make this message a reply. Avoid using a reply's ts value; use its parent instead.
unfurl_links
boolean
·Optional
Pass true to enable unfurling of primarily text-based content.
Example
true
unfurl_media
boolean
·Optional
Pass false to disable unfurling of media content.
Example
false
username
string
·Optional
Set your bot's user name.
Example
My Bot
"""
question = """
Convert the above docs to markdown format.
"""
prompt = f"""
<api_doc>
{swagger_docs}
</api_doc>
<question>
{question}
</question>
<response>
"""
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=1800)
doc = (
tokenizer.decode(outputs[0][inputs.input_ids.shape[-1]:], skip_special_tokens=True)
)
print(doc)
```
### Team
Avi Kothari, Pratham Gupta, Ritvik Aryan Kalra, Rohan Bhatial, Soham Acharya |