PlanTL Project's Spanish-Galician machine translation model

Table of Contents

Model description

This model was trained from scratch using the Fairseq toolkit on a combination of Spanish-Galician datasets, up to 31 million sentences. Additionally, the model is evaluated on several public datasets, Flores 101, Spanish Constitutioni (TaCon) and Tatoeba.

Intended uses and limitations

You can use this model for machine translation from Spanish to Galician.

How to use

Usage

Required libraries:

pip install ctranslate2 pyonmttok

Translate a sentence using python

import ctranslate2
import pyonmttok
from huggingface_hub import snapshot_download
model_dir = snapshot_download(repo_id="PlanTL-GOB-ES/mt-plantl-es-gl", revision="main")

tokenizer=pyonmttok.Tokenizer(mode="none", sp_model_path = model_dir + "/spm.model")
tokenized=tokenizer.tokenize("Bienvenido al Proyecto PlanTL!")

translator = ctranslate2.Translator(model_dir)
translated = translator.translate_batch([tokenized[0]])
print(tokenizer.detokenize(translated[0][0]['tokens']))

Training

Training data

The model was trained on a combination of the following datasets:

Dataset Sentences
CLUVI 318.612
WikiMatrix 438.181
WikiMedia 83.511
QED 30.211
TED 2020 v1 33.324
CCMatrix v1 24.165.978
ParaCrawl 6.537.374
OpenSubtitles 197.519
Total 31.804.710

Training procedure

Data preparation

All datasets are concatenated and filtered using the mBERT Gencata parallel filter and cleaned using the clean-corpus-n.pl script from moses, allowing sentences between 5 and 150 words.

Before training, the punctuation is normalized using a modified version of the join-single-file.py script from SoftCatalà

Tokenization

All data is tokenized using sentencepiece, with 50 thousand token sentencepiece model learned from the combination of all filtered training data. This model is included.

Hyperparameters

The model is based on the Transformer-XLarge proposed by Subramanian et al. The following hyperparamenters were set on the Fairseq toolkit:

Hyperparameter Value
Architecture transformer_vaswani_wmt_en_de_big
Embedding size 1024
Feedforward size 4096
Number of heads 16
Encoder layers 24
Decoder layers 6
Normalize before attention True
--share-decoder-input-output-embed True
--share-all-embeddings True
Effective batch size 96.000
Optimizer adam
Adam betas (0.9, 0.980)
Clip norm 0.0
Learning rate 1e-3
Lr. schedurer inverse sqrt
Warmup updates 4000
Dropout 0.1
Label smoothing 0.1

The model was trained using shards of 10 million sentences, for a total of 8.000 updates. Weights were saved every 1000 updates and reported results are the average of the last 6 checkpoints. After this, the model was trained an extra epoch on the CLUVI dataset.

Evaluation

Variable and metrics

We use the BLEU score for evaluation on test sets: Flores-101, TaCon, Tatoeba

Evaluation results

Below are the evaluation results on the machine translation from Spanish to Galician compared to Apertium, Google Translate and M2M 100 418M:

Test set Apertium Google Translate M2M-100 418M mt-plantl-es-gl
Spanish Constitution 74,5 60,4 70,7 84,3
Flores 101 devtest 21,4 25,6 21,6 21,8
Tatoeba 67,9 52,8 53,9 66,6
Average 54,3 46,3 48,7 57,6

Additional information

Author

Text Mining Unit (TeMU) at the Barcelona Supercomputing Center ([email protected])

Contact information

For further information, send an email to [email protected]

Copyright

Copyright by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) (2022)

Licensing information

This work is licensed under a Apache License, Version 2.0

Funding

This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA)

Disclaimer

Click to expand

The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions.

When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence.

In no event shall the owner of the models (SEDIA – State Secretariat for Digitalization and Artificial Intelligence) nor the creator (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.

Los modelos publicados en este repositorio tienen una finalidad generalista y están a disposición de terceros. Estos modelos pueden tener sesgos y/u otro tipo de distorsiones indeseables.

Cuando terceros desplieguen o proporcionen sistemas y/o servicios a otras partes usando alguno de estos modelos (o utilizando sistemas basados en estos modelos) o se conviertan en usuarios de los modelos, deben tener en cuenta que es su responsabilidad mitigar los riesgos derivados de su uso y, en todo caso, cumplir con la normativa aplicable, incluyendo la normativa en materia de uso de inteligencia artificial.

En ningún caso el propietario de los modelos (SEDIA – Secretaría de Estado de Digitalización e Inteligencia Artificial) ni el creador (BSC – Barcelona Supercomputing Center) serán responsables de los resultados derivados del uso que hagan terceros de estos modelos.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .