Update README.md
#1
by
Ponimash
- opened
README.md
CHANGED
@@ -10,135 +10,78 @@ tags:
|
|
10 |
widget: []
|
11 |
---
|
12 |
|
|
|
|
|
13 |
# SentenceTransformer
|
14 |
|
15 |
-
|
16 |
|
17 |
-
##
|
18 |
|
19 |
-
###
|
20 |
-
-
|
21 |
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
- **Similarity Function:** Cosine Similarity
|
25 |
-
<!-- - **Training Dataset:** Unknown -->
|
26 |
-
<!-- - **Language:** Unknown -->
|
27 |
-
<!-- - **License:** Unknown -->
|
28 |
|
29 |
-
###
|
30 |
|
31 |
-
-
|
32 |
-
-
|
33 |
-
- **Hugging Face:** [Sentence Transformers
|
34 |
|
35 |
-
###
|
36 |
|
37 |
-
```
|
38 |
SentenceTransformer(
|
39 |
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: GPT2Model
|
40 |
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
41 |
-
(2): Dense({'in_features': 1024, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
|
42 |
)
|
43 |
```
|
44 |
|
45 |
-
##
|
46 |
|
47 |
-
###
|
48 |
|
49 |
-
|
50 |
|
51 |
```bash
|
52 |
pip install -U sentence-transformers
|
53 |
```
|
54 |
|
55 |
-
|
|
|
56 |
```python
|
57 |
from sentence_transformers import SentenceTransformer
|
58 |
|
59 |
-
#
|
60 |
-
model = SentenceTransformer("
|
61 |
-
#
|
62 |
sentences = [
|
63 |
-
'
|
64 |
-
|
65 |
-
'
|
66 |
]
|
67 |
embeddings = model.encode(sentences)
|
68 |
print(embeddings.shape)
|
69 |
-
# [3,
|
70 |
|
71 |
-
#
|
72 |
similarities = model.similarity(embeddings, embeddings)
|
73 |
print(similarities.shape)
|
74 |
# [3, 3]
|
75 |
```
|
76 |
|
77 |
-
|
78 |
-
### Direct Usage (Transformers)
|
79 |
-
|
80 |
-
<details><summary>Click to see the direct usage in Transformers</summary>
|
81 |
-
|
82 |
-
</details>
|
83 |
-
-->
|
84 |
-
|
85 |
-
<!--
|
86 |
-
### Downstream Usage (Sentence Transformers)
|
87 |
-
|
88 |
-
You can finetune this model on your own dataset.
|
89 |
-
|
90 |
-
<details><summary>Click to expand</summary>
|
91 |
-
|
92 |
-
</details>
|
93 |
-
-->
|
94 |
-
|
95 |
-
<!--
|
96 |
-
### Out-of-Scope Use
|
97 |
-
|
98 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
99 |
-
-->
|
100 |
-
|
101 |
-
<!--
|
102 |
-
## Bias, Risks and Limitations
|
103 |
-
|
104 |
-
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
105 |
-
-->
|
106 |
-
|
107 |
-
<!--
|
108 |
-
### Recommendations
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
### Framework Versions
|
116 |
-
- Python: 3.10.12
|
117 |
-
- Sentence Transformers: 3.0.1
|
118 |
-
- Transformers: 4.44.2
|
119 |
-
- PyTorch: 2.4.0+cu121
|
120 |
-
- Accelerate: 0.33.0
|
121 |
-
- Datasets: 2.21.0
|
122 |
-
- Tokenizers: 0.19.1
|
123 |
-
|
124 |
-
## Citation
|
125 |
-
|
126 |
-
### BibTeX
|
127 |
-
|
128 |
-
<!--
|
129 |
-
## Glossary
|
130 |
-
|
131 |
-
*Clearly define terms in order to be accessible across audiences.*
|
132 |
-
-->
|
133 |
-
|
134 |
-
<!--
|
135 |
-
## Model Card Authors
|
136 |
-
|
137 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
138 |
-
-->
|
139 |
-
|
140 |
-
<!--
|
141 |
-
## Model Card Contact
|
142 |
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
10 |
widget: []
|
11 |
---
|
12 |
|
13 |
+
Эксперимент по использованию модели, наподобие GPT-2, в качестве эмбеддера. Базовая модель: `ai-forever/rugpt3medium_based_on_gpt2`, извлечено первые 6 слоев.
|
14 |
+
|
15 |
# SentenceTransformer
|
16 |
|
17 |
+
Это модель [sentence-transformers](https://www.SBERT.net), которая обучена для преобразования предложений и абзацев в плотное векторное пространство размерностью 1024. Она может использоваться для семантического сопоставления текста, семантического поиска, поиска парафраз, классификации текста, кластеризации и других задач.
|
18 |
|
19 |
+
## Описание Модели
|
20 |
|
21 |
+
### Основные Характеристики
|
22 |
+
- **Тип модели:** Sentence Transformer
|
23 |
+
- **Максимальная длина последовательности:** 2048 токенов
|
24 |
+
- **Размерность выхода:** 1024
|
25 |
+
- **Функция Similarity:** Косинусное сходство
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
### Источники Модели
|
28 |
|
29 |
+
- **Документация:** [Sentence Transformers Documentation](https://sbert.net)
|
30 |
+
- **Репозиторий:** [Sentence Transformers на GitHub](https://github.com/UKPLab/sentence-transformers)
|
31 |
+
- **Hugging Face:** [Sentence Transformers на Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
32 |
|
33 |
+
### Полная Архитектура Модели
|
34 |
|
35 |
+
```python
|
36 |
SentenceTransformer(
|
37 |
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: GPT2Model
|
38 |
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
|
|
39 |
)
|
40 |
```
|
41 |
|
42 |
+
## Использование
|
43 |
|
44 |
+
### Прямое Использование (Sentence Transformers)
|
45 |
|
46 |
+
Для начала установите библиотеку Sentence Transformers:
|
47 |
|
48 |
```bash
|
49 |
pip install -U sentence-transformers
|
50 |
```
|
51 |
|
52 |
+
Затем загрузите эту модель и выполните инференс.
|
53 |
+
|
54 |
```python
|
55 |
from sentence_transformers import SentenceTransformer
|
56 |
|
57 |
+
# Загрузка модели с 🤗 Hub
|
58 |
+
model = SentenceTransformer("Ponimash/gpt_text_embd")
|
59 |
+
# Запуск инференса
|
60 |
sentences = [
|
61 |
+
'Погода сегодня прекрасная.',
|
62 |
+
'На улице так солнечно!',
|
63 |
+
'Он поехал на стадион.',
|
64 |
]
|
65 |
embeddings = model.encode(sentences)
|
66 |
print(embeddings.shape)
|
67 |
+
# [3, 1024]
|
68 |
|
69 |
+
# Получение оценок схожести для эмбеддингов
|
70 |
similarities = model.similarity(embeddings, embeddings)
|
71 |
print(similarities.shape)
|
72 |
# [3, 3]
|
73 |
```
|
74 |
|
75 |
+
### Результаты
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
```python
|
78 |
+
# Выходная размерность: 1024
|
79 |
+
tensor([[1.0000, 0.6575, 0.4605],
|
80 |
+
[0.6575, 1.0000, 0.4683],
|
81 |
+
[0.4605, 0.4683, 1.0000]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
SentenceTransformer(
|
84 |
+
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: GPT2Model
|
85 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
86 |
+
)
|
87 |
+
```
|