bert-base-uncased-intent-booking

This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1797
  • Accuracy: 0.1937
  • F1: 0.1715
  • Precision: 0.3099
  • Recall: 0.1937

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 64
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
2.3533 1.0 65 2.3007 0.0946 0.0338 0.0281 0.0946
2.2868 2.0 130 2.1968 0.1351 0.0632 0.0472 0.1351
2.2299 3.0 195 2.1730 0.1847 0.1151 0.1020 0.1847
2.1909 4.0 260 2.1719 0.1937 0.1687 0.3112 0.1937
2.1657 5.0 325 2.1376 0.2027 0.1567 0.2069 0.2027
2.1437 6.0 390 2.1459 0.1757 0.1461 0.1909 0.1757
2.1342 7.0 455 2.1581 0.1667 0.1418 0.2867 0.1667
2.1025 8.0 520 2.1425 0.1892 0.1504 0.2449 0.1892
2.0749 9.0 585 2.1277 0.1847 0.1641 0.3096 0.1847
2.0482 10.0 650 2.1283 0.2117 0.1895 0.3519 0.2117
2.0654 11.0 715 2.1253 0.2117 0.1886 0.3004 0.2117
2.0443 12.0 780 2.1200 0.1937 0.1770 0.2982 0.1937
2.0345 13.0 845 2.1252 0.1937 0.1791 0.3098 0.1937
2.0148 14.0 910 2.1113 0.1982 0.1783 0.2804 0.1982
2.0112 15.0 975 2.1372 0.1892 0.1702 0.2746 0.1892
2.0022 16.0 1040 2.1254 0.1892 0.1696 0.2710 0.1892
1.9913 17.0 1105 2.1221 0.1892 0.1696 0.2710 0.1892
1.9827 18.0 1170 2.1090 0.1982 0.1758 0.2910 0.1982
1.9871 19.0 1235 2.1111 0.1982 0.1789 0.2756 0.1982
1.9824 20.0 1300 2.1132 0.1892 0.1705 0.2665 0.1892

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Porameht/bert-base-uncased-intent-booking

Finetuned
(2404)
this model