File size: 5,176 Bytes
003b904 4859198 003b904 e726dc8 003b904 5f20f2f bcd1a1f 5f20f2f b87c829 5f20f2f b87c829 003b904 109a2c4 eb58b5c 003b904 d2557f8 0c1dea5 d2557f8 0c1dea5 d2557f8 fe1da60 b95a223 3abcff8 003b904 9b05bde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
license: apache-2.0
language:
- en
pipeline_tag: text-generation
---
## Introduction
SmallThinker is a family of **on-device native** Mixture-of-Experts (MoE) language models specially designed for local deployment,
co-developed by the **IPADS** and **School of AI at Shanghai Jiao Tong University** and **Zenergize AI**.
Designed from the ground up for resource-constrained environments,
SmallThinker brings powerful, private, and low-latency AI directly to your personal devices,
without relying on the cloud.
## Performance
| Model | MMLU | GPQA-diamond | MATH-500 | IFEVAL | LIVEBENCH | HUMANEVAL | Average |
|------------------------------|-------|--------------|----------|--------|-----------|-----------|---------|
| **SmallThinker-21BA3B-Instruct** | 84.43 | <u>55.05</u> | 82.4 | **85.77** | **60.3** | <u>89.63</u> | **76.26** |
| Gemma3-12b-it | 78.52 | 34.85 | 82.4 | 74.68 | 44.5 | 82.93 | 66.31 |
| Qwen3-14B | <u>84.82</u> | 50 | **84.6** | <u>85.21</u>| <u>59.5</u> | 88.41 | <u>75.42</u> |
| Qwen3-30BA3B | **85.1** | 44.4 | <u>84.4</u> | 84.29 | 58.8 | **90.24** | 74.54 |
| Qwen3-8B | 81.79 | 38.89 | 81.6 | 83.92 | 49.5 | 85.9 | 70.26 |
| Phi-4-14B | 84.58 | **55.45** | 80.2 | 63.22 | 42.4 | 87.2 | 68.84 |
For the MMLU evaluation, we use a 0-shot CoT setting.
All models are evaluated in non-thinking mode.
## Speed
| Model | Memory(GiB) | i9 14900 | 1+13 8ge4 | rk3588 (16G) | Raspberry PI 5 |
|--------------------------------------|---------------------|----------|-----------|--------------|----------------|
| SmallThinker 21B+sparse | 11.47 | 30.19 | 23.03 | 10.84 | 6.61 |
| SmallThinker 21B+sparse+limited memory | limit 8G | 20.30 | 15.50 | 8.56 | - |
| Qwen3 30B A3B | 16.20 | 33.52 | 20.18 | 9.07 | - |
| Qwen3 30B A3B+limited memory | limit 8G | 10.11 | 0.18 | 6.32 | - |
| Gemma 3n E2B | 1G, theoretically | 36.88 | 27.06 | 12.50 | 6.66 |
| Gemma 3n E4B | 2G, theoretically | 21.93 | 16.58 | 7.37 | 4.01 |
Note: i9 14900, 1+13 8ge4 use 4 threads, others use the number of threads that can achieve the maximum speed. All models here have been quantized to q4_0.
You can deploy SmallThinker with offloading support using [PowerInfer](https://github.com/SJTU-IPADS/PowerInfer/tree/main/smallthinker)
## Model Card
<div align="center">
| **Architecture** | Mixture-of-Experts (MoE) |
|:---:|:---:|
| **Total Parameters** | 21B |
| **Activated Parameters** | 3B |
| **Number of Layers** | 52 |
| **Attention Hidden Dimension** | 2560 |
| **MoE Hidden Dimension** (per Expert) | 768 |
| **Number of Attention Heads** | 28 |
| **Number of KV Heads** | 4 |
| **Number of Experts** | 64 |
| **Selected Experts per Token** | 6 |
| **Vocabulary Size** | 151,936 |
| **Context Length** | 16K |
| **Attention Mechanism** | GQA |
| **Activation Function** | ReGLU |
</div>
## How to Run
### Transformers
The latest version of `transformers` is recommended or `transformers>=4.53.3` is required.
The following contains a code snippet illustrating how to use the model generate content based on given inputs.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
path = "PowerInfer/SmallThinker-21BA3B-Instruct"
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True)
messages = [
{"role": "user", "content": "Give me a short introduction to large language model."},
]
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to(device)
model_outputs = model.generate(
model_inputs,
do_sample=True,
max_new_tokens=1024
)
output_token_ids = [
model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs))
]
responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]
print(responses)
```
### ModelScope
`ModelScope` adopts Python API similar to (though not entirely identical to) `Transformers`. For basic usage, simply modify the first line of the above code as follows:
```python
from modelscope import AutoModelForCausalLM, AutoTokenizer
```
## Statement
- Due to the constraints of its model size and the limitations of its training data, its responses may contain factual inaccuracies, biases, or outdated information.
- Users bear full responsibility for independently evaluating and verifying the accuracy and appropriateness of all generated content.
- SmallThinker does not possess genuine comprehension or consciousness and cannot express personal opinions or value judgments. |