Introduction
SmallThinker is a family of on-device native Mixture-of-Experts (MoE) language models specially designed for local deployment, co-developed by the IPADS and School of AI at Shanghai Jiao Tong University and Zenergize AI. Designed from the ground up for resource-constrained environments, SmallThinker brings powerful, private, and low-latency AI directly to your personal devices, without relying on the cloud.
Performance
Model | MMLU | GPQA-diamond | GSM8K | MATH-500 | IFEVAL | LIVEBENCH | HUMANEVAL | Average |
---|---|---|---|---|---|---|---|---|
SmallThinker-4BA0.6B-Instruct | 66.11 | 31.31 | 80.02 | 60.60 | 69.69 | 42.20 | 82.32 | 61.75 |
Qwen3-0.6B | 43.31 | 26.77 | 62.85 | 45.6 | 58.41 | 23.1 | 31.71 | 41.67 |
Qwen3-1.7B | 64.19 | 27.78 | 81.88 | 63.6 | 69.50 | 35.60 | 61.59 | 57.73 |
Gemma3nE2b-it | 63.04 | 20.2 | 82.34 | 58.6 | 73.2 | 27.90 | 64.63 | 55.70 |
Llama-3.2-3B-Instruct | 64.15 | 24.24 | 75.51 | 40 | 71.16 | 15.30 | 55.49 | 49.41 |
Llama-3.2-1B-Instruct | 45.66 | 22.73 | 1.67 | 14.4 | 48.06 | 13.50 | 37.20 | 26.17 |
For the MMLU evaluation, we use a 0-shot CoT setting.
All models are evaluated in non-thinking mode.
Speed
Model | Memory(GiB) | i9 14900 | 1+13 8gen4 | rk3588 (16G) | rk3576 | Raspberry PI 5 | RDK X5 | rk3566 |
---|---|---|---|---|---|---|---|---|
SmallThinker 4B+sparse ffn +sparse lm_head | 2.24 | 108.17 | 78.99 | 39.76 | 15.10 | 28.77 | 7.23 | 6.33 |
SmallThinker 4B+sparse ffn +sparse lm_head+limited memory | limit 1G | 29.99 | 20.91 | 15.04 | 2.60 | 0.75 | 0.67 | 0.74 |
Qwen3 0.6B | 0.6 | 148.56 | 94.91 | 45.93 | 15.29 | 27.44 | 13.32 | 9.76 |
Qwen3 1.7B | 1.3 | 62.24 | 41.00 | 20.29 | 6.09 | 11.08 | 6.35 | 4.15 |
Qwen3 1.7B+limited memory | limit 1G | 2.66 | 1.09 | 1.00 | 0.47 | - | - | 0.11 |
Gemma3n E2B | 1G, theoretically | 36.88 | 27.06 | 12.50 | 3.80 | 6.66 | 3.46 | 2.45 |
Note:i9 14900、1+13 8ge4 use 4 threads,others use the number of threads that can achieve the maximum speed. All models here have been quantized to q4_0.
You can deploy SmallThinker with offloading support using PowerInfer
Model Card
Architecture | Mixture-of-Experts (MoE) |
---|---|
Total Parameters | 4B |
Activated Parameters | 0.6B |
Number of Layers | 32 |
Attention Hidden Dimension | 1536 |
MoE Hidden Dimension (per Expert) | 768 |
Number of Attention Heads | 12 |
Number of Experts | 32 |
Selected Experts per Token | 4 |
Vocabulary Size | 151,936 |
Context Length | 32K |
Attention Mechanism | GQA |
Activation Function | ReGLU |
How to Run
Transformers
The latest version of transformers
is recommended or transformers>=4.53.3
is required.
The following contains a code snippet illustrating how to use the model generate content based on given inputs.
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
path = "PowerInfer/SmallThinker-4BA0.6B-Instruct"
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True)
messages = [
{"role": "user", "content": "Give me a short introduction to large language model."},
]
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to(device)
model_outputs = model.generate(
model_inputs,
do_sample=True,
max_new_tokens=1024
)
output_token_ids = [
model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs))
]
responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]
print(responses)
ModelScope
ModelScope
adopts Python API similar to (though not entirely identical to) Transformers
. For basic usage, simply modify the first line of the above code as follows:
from modelscope import AutoModelForCausalLM, AutoTokenizer
Statement
- Due to the constraints of its model size and the limitations of its training data, its responses may contain factual inaccuracies, biases, or outdated information.
- Users bear full responsibility for independently evaluating and verifying the accuracy and appropriateness of all generated content.
- SmallThinker does not possess genuine comprehension or consciousness and cannot express personal opinions or value judgments.
- Downloads last month
- 10