BLGS commited on
Commit
6aabad7
·
1 Parent(s): 80a315d

fix: merge modular_smallthinker and modeling_smallthinker in case of import error

Browse files
Files changed (1) hide show
  1. modeling_smallthinker.py +396 -4
modeling_smallthinker.py CHANGED
@@ -1,22 +1,414 @@
1
  # coding=utf-8
2
- from typing import List, Optional, Union
3
 
4
  import torch
5
  import torch.nn.functional as F
6
  from torch import nn
7
 
8
- from transformers.cache_utils import HybridCache, StaticCache
9
  from transformers.generation import GenerationMixin
10
  from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
11
  from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
12
  from transformers.modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast
 
 
13
  from transformers.processing_utils import Unpack
14
  from transformers.utils import LossKwargs, can_return_tuple, logging
 
15
  from .configuration_smallthinker import SmallThinkerConfig
16
- from .modular_smallthinker import *
17
 
18
  logger = logging.get_logger(__name__)
19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  class SmallThinkerModel(SmallThinkerPreTrainedModel):
22
  def __init__(self, config: SmallThinkerConfig):
@@ -284,4 +676,4 @@ __all__ = [
284
  "SmallThinkerForCausalLM",
285
  "SmallThinkerModel",
286
  "SmallThinkerPreTrainedModel"
287
- ]
 
1
  # coding=utf-8
2
+ from typing import List, Optional, Union, Callable, Tuple
3
 
4
  import torch
5
  import torch.nn.functional as F
6
  from torch import nn
7
 
8
+ from transformers.cache_utils import Cache, HybridCache, StaticCache
9
  from transformers.generation import GenerationMixin
10
  from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
11
  from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
12
  from transformers.modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast
13
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
14
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
15
  from transformers.processing_utils import Unpack
16
  from transformers.utils import LossKwargs, can_return_tuple, logging
17
+
18
  from .configuration_smallthinker import SmallThinkerConfig
 
19
 
20
  logger = logging.get_logger(__name__)
21
 
22
+ @torch.jit.script
23
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
24
+ """
25
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
26
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
27
+ """
28
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
29
+ if n_rep == 1:
30
+ return hidden_states
31
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
32
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
33
+
34
+
35
+ def rotate_half(x):
36
+ """Rotates half the hidden dims of the input."""
37
+ x1 = x[..., : x.shape[-1] // 2]
38
+ x2 = x[..., x.shape[-1] // 2 :]
39
+ return torch.cat((-x2, x1), dim=-1)
40
+
41
+
42
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
43
+ """Applies Rotary Position Embedding to the query and key tensors.
44
+
45
+ Args:
46
+ q (`torch.Tensor`): The query tensor.
47
+ k (`torch.Tensor`): The key tensor.
48
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
49
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
50
+ position_ids (`torch.Tensor`, *optional*):
51
+ Deprecated and unused.
52
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
53
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
54
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
55
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
56
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
57
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
58
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
59
+ Returns:
60
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
61
+ """
62
+ cos = cos.unsqueeze(unsqueeze_dim)
63
+ sin = sin.unsqueeze(unsqueeze_dim)
64
+ q_embed = (q * cos) + (rotate_half(q) * sin)
65
+ k_embed = (k * cos) + (rotate_half(k) * sin)
66
+ return q_embed, k_embed
67
+
68
+
69
+ def check_is_swa_layer(config, layer_idx):
70
+ """
71
+ Check if the current layer is a sliding window attention layer.
72
+ """
73
+ if not hasattr(config, "sliding_window_layout"):
74
+ return False
75
+ elif config.sliding_window_layout is None:
76
+ return False
77
+ else:
78
+ return config.sliding_window_layout[layer_idx] == 1
79
+
80
+
81
+ class SmallThinkerRMSNorm(nn.Module):
82
+ def __init__(self, hidden_size, eps=1e-6):
83
+ """
84
+ SmallThinkerRMSNorm is equivalent to T5LayerNorm
85
+ """
86
+ super().__init__()
87
+ self.weight = nn.Parameter(torch.ones(hidden_size))
88
+ self.variance_epsilon = eps
89
+
90
+ def forward(self, hidden_states):
91
+ input_dtype = hidden_states.dtype
92
+ hidden_states = hidden_states.to(torch.float32)
93
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
94
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
95
+ return self.weight * hidden_states.to(input_dtype)
96
+
97
+ def extra_repr(self):
98
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
99
+
100
+
101
+ class SmallThinkerRotaryEmbedding(nn.Module):
102
+ def __init__(self, config: SmallThinkerConfig, device=None):
103
+ super().__init__()
104
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
105
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
106
+ else:
107
+ self.rope_type = "default"
108
+ self.max_seq_len_cached = config.max_position_embeddings
109
+ self.original_max_seq_len = config.max_position_embeddings
110
+
111
+ self.config = config
112
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
113
+
114
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
115
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
116
+ self.original_inv_freq = self.inv_freq
117
+
118
+ @torch.no_grad()
119
+ @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
120
+ def forward(self, x, position_ids):
121
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
122
+ position_ids_expanded = position_ids[:, None, :].float()
123
+
124
+ device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
125
+ with torch.autocast(device_type=device_type, enabled=False): # Force float32
126
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
127
+ emb = torch.cat((freqs, freqs), dim=-1)
128
+ cos = emb.cos() * self.attention_scaling
129
+ sin = emb.sin() * self.attention_scaling
130
+
131
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
132
+
133
+
134
+ class SmallThinkerExpert(nn.Module):
135
+ def __init__(self, config: SmallThinkerConfig):
136
+ super().__init__()
137
+ self.hidden_dim = config.hidden_size
138
+ self.ffn_dim = config.moe_ffn_hidden_size
139
+
140
+ self.up = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
141
+ self.gate = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
142
+ self.down = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
143
+
144
+ def forward(self, hidden_states: torch.Tensor):
145
+ current_hidden_states = self.up(hidden_states) * F.relu(self.gate(hidden_states))
146
+ batch_size, _ = current_hidden_states.shape
147
+ current_hidden_states = current_hidden_states.view(batch_size, -1)
148
+ current_hidden_states = self.down(current_hidden_states)
149
+ return current_hidden_states
150
+
151
+
152
+ class SmallThinkerMoeBlock(nn.Module):
153
+ def __init__(self, config: SmallThinkerConfig):
154
+ super().__init__()
155
+ self.hidden_dim = config.hidden_size
156
+ self.num_primary_experts = config.moe_num_primary_experts
157
+ self.moe_primary_router_apply_softmax = config.moe_primary_router_apply_softmax
158
+ self.num_active_primary_experts = config.moe_num_active_primary_experts
159
+ self.primary_router = nn.Linear(self.hidden_dim, self.num_primary_experts, bias=False)
160
+ self.experts = nn.ModuleList([SmallThinkerExpert(config) for _ in range(self.num_primary_experts)])
161
+
162
+ def forward(self, router_input: torch.Tensor, hidden_states: torch.Tensor) -> torch.Tensor:
163
+ batch_size, sequence_length, hidden_dim = hidden_states.shape
164
+ # Flatten the tokens into (bs * sl, hidden_dim)
165
+ hidden_states = hidden_states.view(-1, hidden_dim)
166
+ router_input = router_input.view(-1, hidden_dim)
167
+ # Primary router logits: (bs * sl, n_experts)
168
+ router_logits = self.primary_router(router_input)
169
+
170
+ router_logits, selected_experts = torch.topk(router_logits, self.num_active_primary_experts, dim=-1)
171
+
172
+ if self.moe_primary_router_apply_softmax:
173
+ routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
174
+ else:
175
+ routing_weights = F.sigmoid(router_logits)
176
+ routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
177
+
178
+ routing_weights = routing_weights.to(hidden_states.dtype)
179
+
180
+ # Prepare the final tensor
181
+ final_hidden_states = torch.zeros(
182
+ (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
183
+ )
184
+
185
+ # One hot encode the selected experts to create an expert mask
186
+ # this will be used to easily index which expert is going to be sollicitated
187
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_primary_experts).permute(2, 1, 0)
188
+ expert_hitted = (expert_mask.sum(dim=(-1, -2)) > 0).nonzero(as_tuple=True)[0].tolist()
189
+
190
+ for expert_idx in expert_hitted:
191
+ expert_layer = self.experts[expert_idx]
192
+ idx, top_x = torch.where(expert_mask[expert_idx])
193
+ # Index the correct hidden states and compute the expert hidden state for
194
+ # the current expert. We need to make sure to multiply the output hidden
195
+ # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
196
+ current_state = hidden_states[top_x].reshape(-1, hidden_dim)
197
+ current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
198
+
199
+ # However `index_add_` only support torch tensors for indexing so we'll use the `top_x` tensor here.
200
+ final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
201
+ final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
202
+ return final_hidden_states, router_logits
203
+
204
+
205
+ def eager_attention_forward(
206
+ module: nn.Module,
207
+ query: torch.Tensor,
208
+ key: torch.Tensor,
209
+ value: torch.Tensor,
210
+ attention_mask: Optional[torch.Tensor],
211
+ scaling: float,
212
+ dropout: float = 0.0,
213
+ **kwargs,
214
+ ):
215
+ key_states = repeat_kv(key, module.num_key_value_groups)
216
+ value_states = repeat_kv(value, module.num_key_value_groups)
217
+
218
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
219
+ if attention_mask is not None:
220
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
221
+ attn_weights = attn_weights + causal_mask
222
+
223
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
224
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
225
+ attn_output = torch.matmul(attn_weights, value_states)
226
+ attn_output = attn_output.transpose(1, 2).contiguous()
227
+
228
+ return attn_output, attn_weights
229
+
230
+
231
+ class SmallThinkerAttention(nn.Module):
232
+ def __init__(self, config: SmallThinkerConfig, layer_idx: int):
233
+ super().__init__()
234
+ self.config = config
235
+ self.layer_idx = layer_idx
236
+ self.head_dim = config.head_dim
237
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
238
+ self.scaling = self.head_dim**-0.5
239
+ self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False)
240
+ self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
241
+ self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
242
+ self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
243
+ self.sliding_window = config.sliding_window_size if config.sliding_window_layout[layer_idx] else None
244
+
245
+ def forward(
246
+ self,
247
+ hidden_states: torch.Tensor,
248
+ position_embeddings: Tuple[torch.Tensor, torch.Tensor],
249
+ attention_mask: Optional[torch.Tensor],
250
+ past_key_value: Optional[Cache] = None,
251
+ cache_position: Optional[torch.LongTensor] = None,
252
+ **kwargs: Unpack[FlashAttentionKwargs],
253
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
254
+
255
+ input_shape = hidden_states.shape[:-1]
256
+ hidden_shape = (*input_shape, -1, self.head_dim)
257
+
258
+ query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
259
+ key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
260
+ value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
261
+
262
+ if position_embeddings:
263
+ cos, sin = position_embeddings
264
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
265
+ else:
266
+ cos, sin = None, None
267
+
268
+ if past_key_value is not None:
269
+ cache_kwargs = {
270
+ "sin": sin,
271
+ "cos": cos,
272
+ "cache_position": cache_position,
273
+ "sliding_window": self.sliding_window,
274
+ }
275
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
276
+
277
+ attention_interface: Callable = eager_attention_forward
278
+ if self.config._attn_implementation != "eager":
279
+ if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
280
+ logger.warning_once(
281
+ "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
282
+ 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
283
+ )
284
+ else:
285
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
286
+
287
+ attn_output, attn_weights = attention_interface(
288
+ self,
289
+ query_states,
290
+ key_states,
291
+ value_states,
292
+ attention_mask,
293
+ dropout=0.0,
294
+ scaling=self.scaling,
295
+ sliding_window=self.sliding_window,
296
+ **kwargs,
297
+ )
298
+
299
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
300
+ attn_output = self.o_proj(attn_output)
301
+ return attn_output, attn_weights
302
+
303
+
304
+ class SmallThinkerDecoderLayer(nn.Module):
305
+ def __init__(self, config: SmallThinkerConfig, layer_idx: int):
306
+ super().__init__()
307
+ self.hidden_size = config.hidden_size
308
+ self.self_attn = SmallThinkerAttention(config, layer_idx)
309
+ self.block_sparse_moe = SmallThinkerMoeBlock(config)
310
+ self.input_layernorm = SmallThinkerRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
311
+ self.post_attention_layernorm = SmallThinkerRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
312
+ self.is_swa = check_is_swa_layer(config, layer_idx)
313
+
314
+ if self.is_swa and config._attn_implementation == "sdpa":
315
+ logger.warning_once(
316
+ f"Sliding Window Attention is enabled but not optimized for `{config._attn_implementation}`; "
317
+ "unexpected results may be encountered."
318
+ )
319
+
320
+ def forward(
321
+ self,
322
+ hidden_states: torch.Tensor,
323
+ attention_mask: Optional[torch.Tensor] = None,
324
+ position_ids: Optional[torch.LongTensor] = None,
325
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
326
+ output_attentions: Optional[bool] = False,
327
+ output_router_logits: Optional[bool] = False,
328
+ use_cache: Optional[bool] = False,
329
+ cache_position: Optional[torch.LongTensor] = None,
330
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
331
+ **kwargs: Unpack[FlashAttentionKwargs],
332
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
333
+ """
334
+ Args:
335
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
336
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
337
+ `(batch, sequence_length)` where padding elements are indicated by 0.
338
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
339
+ output_attentions (`bool`, *optional*):
340
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
341
+ returned tensors for more detail.
342
+ output_router_logits (`bool`, *optional*):
343
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
344
+ should not be returned during inference.
345
+ use_cache (`bool`, *optional*):
346
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
347
+ (see `past_key_values`).
348
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
349
+ Indices depicting the position of the input sequence tokens in the sequence.
350
+ kwargs (`dict`, *optional*):
351
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
352
+ into the model
353
+ """
354
+ residual = hidden_states
355
+ router_input = hidden_states
356
+ hidden_states = self.input_layernorm(hidden_states)
357
+ # Self Attention
358
+ hidden_states, self_attn_weights = self.self_attn(
359
+ hidden_states=hidden_states,
360
+ position_embeddings=position_embeddings,
361
+ attention_mask=attention_mask,
362
+ position_ids=position_ids,
363
+ past_key_value=past_key_value,
364
+ output_attentions=output_attentions,
365
+ use_cache=use_cache,
366
+ cache_position=cache_position,
367
+ **kwargs,
368
+ )
369
+ hidden_states = residual + hidden_states
370
+
371
+ # Fully Connected
372
+ residual = hidden_states
373
+ hidden_states = self.post_attention_layernorm(hidden_states)
374
+ hidden_states, router_logits = self.block_sparse_moe(router_input, hidden_states)
375
+ hidden_states = residual + hidden_states
376
+
377
+ outputs = (hidden_states,)
378
+ if output_attentions:
379
+ outputs += (self_attn_weights,)
380
+ if output_router_logits:
381
+ outputs += (router_logits,)
382
+ return outputs
383
+
384
+
385
+ class SmallThinkerPreTrainedModel(PreTrainedModel):
386
+ config_class = SmallThinkerConfig
387
+ base_model_prefix = "model"
388
+ supports_gradient_checkpointing = False
389
+ _no_split_modules = ["SmallThinkerDecoderLayer"]
390
+ _skip_keys_device_placement = ["past_key_values"]
391
+ _supports_flash_attn_2 = True
392
+ _supports_sdpa = True
393
+ _supports_flex_attn = False
394
+ _supports_cache_class = True
395
+ _supports_quantized_cache = True
396
+ _supports_static_cache = False
397
+ _supports_attention_backend = True
398
+
399
+ def _init_weights(self, module):
400
+ std = self.config.initializer_range
401
+ if isinstance(module, nn.Linear):
402
+ module.weight.data.normal_(mean=0.0, std=std)
403
+ if module.bias is not None:
404
+ module.bias.data.zero_()
405
+ elif isinstance(module, nn.Embedding):
406
+ module.weight.data.normal_(mean=0.0, std=std)
407
+ if module.padding_idx is not None:
408
+ module.weight.data[module.padding_idx].zero_()
409
+ elif isinstance(module, SmallThinkerRMSNorm):
410
+ module.weight.data.fill_(1.0)
411
+
412
 
413
  class SmallThinkerModel(SmallThinkerPreTrainedModel):
414
  def __init__(self, config: SmallThinkerConfig):
 
676
  "SmallThinkerForCausalLM",
677
  "SmallThinkerModel",
678
  "SmallThinkerPreTrainedModel"
679
+ ]