yixinsong commited on
Commit
84b3156
·
verified ·
1 Parent(s): f5d2c9a

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
checksums.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ 20be6f7b5051c683b6e0de1e9794ee1c5ff9cc8380f74246463eb34870061cda ./model-00002-of-00002.safetensors
2
+ 6cefd487ca75d8283cb2d3c28a6cd66527455ea926cc39a07816a5715ed87992 ./model-00001-of-00002.safetensors
config.json ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "SmallThinkerForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_smallthinker.SmallThinkerConfig",
8
+ "AutoModel": "modeling_smallthinker.SmallThinkerForCausalLM",
9
+ "AutoModelForCausalLM": "modeling_smallthinker.SmallThinkerForCausalLM"
10
+ },
11
+ "bos_token_id": 151643,
12
+ "eos_token_id": [151643,151645],
13
+ "head_dim": 128,
14
+ "hidden_size": 1536,
15
+ "initializer_range": 0.02,
16
+ "max_length": null,
17
+ "max_position_embeddings": 32768,
18
+ "model_name": "smallthinker_4b_instruct",
19
+ "model_type": "smallthinker",
20
+ "moe_ffn_hidden_size": 768,
21
+ "moe_num_active_primary_experts": 4,
22
+ "moe_num_primary_experts": 32,
23
+ "norm_topk_prob": true,
24
+ "num_attention_heads": 12,
25
+ "num_hidden_layers": 32,
26
+ "num_key_value_heads": 2,
27
+ "output_router_logits": false,
28
+ "repetition_penalty": null,
29
+ "rms_norm_eps": 1e-06,
30
+ "rope_layout": [
31
+ 1,
32
+ 1,
33
+ 1,
34
+ 1,
35
+ 1,
36
+ 1,
37
+ 1,
38
+ 1,
39
+ 1,
40
+ 1,
41
+ 1,
42
+ 1,
43
+ 1,
44
+ 1,
45
+ 1,
46
+ 1,
47
+ 1,
48
+ 1,
49
+ 1,
50
+ 1,
51
+ 1,
52
+ 1,
53
+ 1,
54
+ 1,
55
+ 1,
56
+ 1,
57
+ 1,
58
+ 1,
59
+ 1,
60
+ 1,
61
+ 1,
62
+ 1
63
+ ],
64
+ "rope_scaling": null,
65
+ "rope_theta": 1.5e6,
66
+ "sliding_window_size": 4096,
67
+ "sliding_window_layout": [
68
+ 0,
69
+ 0,
70
+ 0,
71
+ 0,
72
+ 0,
73
+ 0,
74
+ 0,
75
+ 0,
76
+ 0,
77
+ 0,
78
+ 0,
79
+ 0,
80
+ 0,
81
+ 0,
82
+ 0,
83
+ 0,
84
+ 0,
85
+ 0,
86
+ 0,
87
+ 0,
88
+ 0,
89
+ 0,
90
+ 0,
91
+ 0,
92
+ 0,
93
+ 0,
94
+ 0,
95
+ 0,
96
+ 0,
97
+ 0,
98
+ 0,
99
+ 0
100
+ ],
101
+ "temperature": null,
102
+ "tie_word_embeddings": true,
103
+ "tokenizer_class": "Qwen2Tokenizer",
104
+ "top_p": null,
105
+ "torch_dtype": "bfloat16",
106
+ "transformers_version": "4.53.3",
107
+ "use_cache": false,
108
+ "vocab_size": 151936
109
+ }
configuration_smallthinker.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ from transformers.configuration_utils import PretrainedConfig
3
+
4
+ class SmallThinkerConfig(PretrainedConfig):
5
+ """
6
+ This is the configuration class to store the configuration of a [`SmallThinkerModel`].
7
+ It is used to instantiate a SmallThinker model according to the specified arguments, defining the model architecture.
8
+ The default values for each of the parameters are the same as the ones used in the original SmallThinker 4B model.
9
+
10
+ General configs:
11
+ - model_type: "smallthinker"
12
+ - model_name
13
+ - num_hidden_layers
14
+ - hidden_size
15
+
16
+ Tokenizer configs:
17
+ - pad_token_id
18
+ - bos_token_id
19
+ - eos_token_id
20
+
21
+ Embedding configs:
22
+ - vocab_size
23
+
24
+ RMSNorm configs:
25
+ - rms_norm_eps
26
+
27
+ Attention configs:
28
+ - num_attention_heads
29
+ - num_key_value_heads
30
+ - head_dim
31
+ - use_cache
32
+ - rope_layout: array of 0 or 1s, 0 for nope, 1 for rope
33
+ - rope_theta
34
+ - max_position_embeddings
35
+ - sliding_window_layout: array of 0 or 1s, 0 for normal attention, 1 for SWA
36
+ - sliding_window_size
37
+
38
+ MoE FFN configs:
39
+ - moe_num_primary_experts
40
+ - moe_ffn_hidden_size
41
+ - moe_primary_router_apply_softmax: Use topk-softmax in routing instead of topk-sigmoid-normalize
42
+ - moe_num_active_primary_experts
43
+
44
+ LM Head configs:
45
+ - tie_word_embeddings
46
+
47
+ Other configs:
48
+ - initializer_range
49
+ """
50
+ def __init__(self,
51
+ model_type = "smallthinker",
52
+ model_name="smallthinker_4b_base",
53
+ num_hidden_layers=32,
54
+ hidden_size=1536,
55
+ pad_token_id=None,
56
+ bos_token_id=151643,
57
+ eos_token_id=[151643,151645],
58
+ vocab_size=151936,
59
+ rms_norm_eps=1e-6,
60
+ num_attention_heads=12,
61
+ num_key_value_heads=2,
62
+ head_dim=128,
63
+ use_cache=True,
64
+ rope_layout=[1]*32,
65
+ rope_theta=1e6,
66
+ max_position_embeddings=4096 * 32,
67
+ sliding_window_layout=[0]*32,
68
+ sliding_window_size=4096,
69
+ moe_num_primary_experts=32,
70
+ moe_ffn_hidden_size=768,
71
+ moe_primary_router_apply_softmax=False,
72
+ moe_num_active_primary_experts=4,
73
+ tie_word_embeddings=True,
74
+ initializer_range=0.02,
75
+ **kwargs,
76
+ ):
77
+ # Configuration sanitizers
78
+ assert num_attention_heads % num_key_value_heads == 0, "[SmallThinker config sanitizer] num_attention_heads must be divisible by num_key_value_heads"
79
+ assert len(rope_layout) == num_hidden_layers, "[SmallThinker config sanitizer] rope_layout must have the same length as num_hidden_layers"
80
+ assert len(sliding_window_layout) == num_hidden_layers, "[SmallThinker config sanitizer] sliding_window_layout must have the same length as num_hidden_layers"
81
+
82
+ # General configs
83
+ self.model_type = model_type
84
+ self.model_name = model_name
85
+ self.num_hidden_layers = num_hidden_layers
86
+ self.hidden_size = hidden_size
87
+
88
+ # Tokenizer configs
89
+ self.pad_token_id = pad_token_id
90
+ self.bos_token_id = bos_token_id
91
+ self.eos_token_id = eos_token_id
92
+
93
+ # Embedding configs
94
+ self.vocab_size = vocab_size
95
+
96
+ # RMSNorm configs
97
+ self.rms_norm_eps = rms_norm_eps
98
+
99
+ # Attention configs
100
+ self.num_attention_heads = num_attention_heads
101
+ self.num_key_value_heads = num_key_value_heads
102
+ self.head_dim = head_dim
103
+ self.use_cache = use_cache
104
+ self.rope_layout = rope_layout
105
+ self.rope_theta = rope_theta
106
+ self.max_position_embeddings = max_position_embeddings
107
+ self.sliding_window_layout = sliding_window_layout
108
+ self.sliding_window_size = sliding_window_size
109
+
110
+ # MoE FFN configs
111
+ self.moe_num_primary_experts = moe_num_primary_experts
112
+ self.moe_ffn_hidden_size = moe_ffn_hidden_size
113
+ self.moe_primary_router_apply_softmax = moe_primary_router_apply_softmax
114
+ self.moe_num_active_primary_experts = moe_num_active_primary_experts
115
+
116
+ # Other configs
117
+ self.initializer_range = initializer_range
118
+
119
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs)
120
+
121
+ # VLLM config, not used in transformers, but VLLM requires these args to run correctly. DO NOT DELETE!
122
+ self.sliding_window = sliding_window_size
123
+ self.sliding_window_pattern = sliding_window_layout
124
+
125
+ self._attn_implementation = "sdpa"
126
+
127
+ __all__ = ["SmallThinkerConfig"]
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151643,
4
+ "eos_token_id": [
5
+ 151643,
6
+ 151645
7
+ ],
8
+ "transformers_version": "4.53.3"
9
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cefd487ca75d8283cb2d3c28a6cd66527455ea926cc39a07816a5715ed87992
3
+ size 4999721256
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20be6f7b5051c683b6e0de1e9794ee1c5ff9cc8380f74246463eb34870061cda
3
+ size 3537628448
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
model_lm_head.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d29461f8711ea6d76a1a2e73921fda360a07fd5004b910cb94d41f05322f3ce
3
+ size 78579669
modeling_smallthinker.py ADDED
@@ -0,0 +1,287 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ from typing import List, Optional, Union
3
+
4
+ import torch
5
+ import torch.nn.functional as F
6
+ from torch import nn
7
+
8
+ from transformers.cache_utils import HybridCache, StaticCache
9
+ from transformers.generation import GenerationMixin
10
+ from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
11
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
12
+ from transformers.modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast
13
+ from transformers.processing_utils import Unpack
14
+ from transformers.utils import LossKwargs, can_return_tuple, logging
15
+ from .configuration_smallthinker import SmallThinkerConfig
16
+ from .modular_smallthinker import *
17
+
18
+ logger = logging.get_logger(__name__)
19
+
20
+
21
+ class SmallThinkerModel(SmallThinkerPreTrainedModel):
22
+ def __init__(self, config: SmallThinkerConfig):
23
+ super().__init__(config)
24
+ self.padding_idx = config.pad_token_id
25
+ self.vocab_size = config.vocab_size
26
+
27
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
28
+ self.layers = nn.ModuleList(
29
+ [SmallThinkerDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
30
+ )
31
+ self.norm = SmallThinkerRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
32
+ self.rotary_emb = SmallThinkerRotaryEmbedding(config=config)
33
+ self.gradient_checkpointing = False
34
+ self.rope_layout = config.rope_layout
35
+ self.config = config
36
+
37
+ # Initialize weights and apply final processing
38
+ self.post_init()
39
+
40
+ def get_input_embeddings(self):
41
+ return self.embed_tokens
42
+
43
+ def set_input_embeddings(self, value):
44
+ self.embed_tokens = value
45
+
46
+ @can_return_tuple
47
+ def forward(
48
+ self,
49
+ input_ids: Optional[torch.LongTensor] = None,
50
+ attention_mask: Optional[torch.Tensor] = None,
51
+ position_ids: Optional[torch.LongTensor] = None,
52
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
53
+ inputs_embeds: Optional[torch.FloatTensor] = None,
54
+ use_cache: Optional[bool] = None,
55
+ output_attentions: Optional[bool] = None,
56
+ output_hidden_states: Optional[bool] = None,
57
+ output_router_logits: Optional[bool] = None,
58
+ cache_position: Optional[torch.LongTensor] = None,
59
+ **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
60
+ ) -> MoeModelOutputWithPast:
61
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
62
+ output_router_logits = (
63
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
64
+ )
65
+ output_hidden_states = (
66
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
67
+ )
68
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
69
+
70
+ if (input_ids is None) ^ (inputs_embeds is not None):
71
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
72
+
73
+ if inputs_embeds is None:
74
+ inputs_embeds = self.embed_tokens(input_ids)
75
+
76
+ if use_cache and past_key_values is None:
77
+ batch_size, seq_len, _ = inputs_embeds.shape
78
+ # NOTE: ideally, `HybridCache` should be initialized outside the model with `layer_device_map`
79
+ if not hasattr(self.config, "sliding_window_layout") or self.config.sliding_window_layout is None or not any(self.config.sliding_window_layout):
80
+ past_key_values = StaticCache(
81
+ self.config,
82
+ max_batch_size=batch_size,
83
+ max_cache_len=seq_len,
84
+ dtype=inputs_embeds.dtype,
85
+ device=self.device,
86
+ )
87
+ else:
88
+ past_key_values = HybridCache(
89
+ self.config,
90
+ max_batch_size=batch_size,
91
+ max_cache_len=seq_len,
92
+ dtype=inputs_embeds.dtype,
93
+ device=self.device,
94
+ )
95
+
96
+ if cache_position is None:
97
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
98
+ cache_position = torch.arange(
99
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
100
+ )
101
+
102
+ if position_ids is None:
103
+ position_ids = cache_position.unsqueeze(0)
104
+
105
+ causal_mask = create_causal_mask(
106
+ config=self.config,
107
+ input_embeds=inputs_embeds,
108
+ attention_mask=attention_mask,
109
+ cache_position=cache_position,
110
+ past_key_values=past_key_values,
111
+ position_ids=position_ids,
112
+ )
113
+ if hasattr(self.config, "sliding_window_layout") and self.config.sliding_window_layout is not None and any(self.config.sliding_window_layout):
114
+ swa_mask = create_sliding_window_causal_mask(
115
+ config=self.config,
116
+ input_embeds=inputs_embeds,
117
+ attention_mask=attention_mask,
118
+ cache_position=cache_position,
119
+ past_key_values=past_key_values,
120
+ position_ids=position_ids,
121
+ )
122
+
123
+ hidden_states = inputs_embeds
124
+ # create position embeddings to be shared across the decoder layers
125
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
126
+
127
+ # decoder layers
128
+ all_hidden_states = () if output_hidden_states else None
129
+ all_self_attns = () if output_attentions else None
130
+ all_router_logits = () if output_router_logits else None
131
+
132
+ for layer_idx, decoder_layer in enumerate(self.layers):
133
+ if output_hidden_states:
134
+ all_hidden_states += (hidden_states,)
135
+
136
+ if hasattr(self.config, "sliding_window_layout") and self.config.sliding_window_layout is not None:
137
+ if self.config.sliding_window_layout[layer_idx] == 1:
138
+ layer_outputs = decoder_layer(
139
+ hidden_states,
140
+ attention_mask=swa_mask,
141
+ position_ids=position_ids,
142
+ past_key_value=past_key_values,
143
+ output_attentions=output_attentions,
144
+ output_router_logits=output_router_logits,
145
+ use_cache=use_cache,
146
+ cache_position=cache_position,
147
+ position_embeddings=position_embeddings if self.rope_layout[layer_idx] else None,
148
+ **flash_attn_kwargs,
149
+ )
150
+ else:
151
+ layer_outputs = decoder_layer(
152
+ hidden_states,
153
+ attention_mask=causal_mask,
154
+ position_ids=position_ids,
155
+ past_key_value=past_key_values,
156
+ output_attentions=output_attentions,
157
+ output_router_logits=output_router_logits,
158
+ use_cache=use_cache,
159
+ cache_position=cache_position,
160
+ position_embeddings=position_embeddings if self.rope_layout[layer_idx] else None,
161
+ **flash_attn_kwargs,
162
+ )
163
+ else:
164
+ layer_outputs = decoder_layer(
165
+ hidden_states,
166
+ attention_mask=causal_mask,
167
+ position_ids=position_ids,
168
+ past_key_value=past_key_values,
169
+ output_attentions=output_attentions,
170
+ output_router_logits=output_router_logits,
171
+ use_cache=use_cache,
172
+ cache_position=cache_position,
173
+ position_embeddings=position_embeddings if self.rope_layout[layer_idx] else None,
174
+ **flash_attn_kwargs,
175
+ )
176
+
177
+ hidden_states = layer_outputs[0]
178
+
179
+ if output_attentions:
180
+ all_self_attns += (layer_outputs[1],)
181
+
182
+ if output_router_logits:
183
+ all_router_logits += (layer_outputs[-1],)
184
+
185
+ hidden_states = self.norm(hidden_states)
186
+
187
+ # add hidden states from the last decoder layer
188
+ if output_hidden_states:
189
+ all_hidden_states += (hidden_states,)
190
+
191
+ return MoeModelOutputWithPast(
192
+ last_hidden_state=hidden_states,
193
+ past_key_values=past_key_values if use_cache else None,
194
+ hidden_states=all_hidden_states,
195
+ attentions=all_self_attns,
196
+ )
197
+
198
+ class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
199
+
200
+ class SmallThinkerForCausalLM(SmallThinkerPreTrainedModel, GenerationMixin):
201
+ _tied_weights_keys = ["lm_head.weight"]
202
+ def __init__(self, config):
203
+ super().__init__(config)
204
+ self.model = SmallThinkerModel(config)
205
+ self.vocab_size = config.vocab_size
206
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
207
+ self.post_init()
208
+
209
+ def get_input_embeddings(self):
210
+ return self.model.embed_tokens
211
+
212
+ def set_input_embeddings(self, value):
213
+ self.model.embed_tokens = value
214
+
215
+ def get_output_embeddings(self):
216
+ return self.lm_head
217
+
218
+ def set_output_embeddings(self, new_embeddings):
219
+ self.lm_head = new_embeddings
220
+
221
+ def set_decoder(self, decoder):
222
+ self.model = decoder
223
+
224
+ def get_decoder(self):
225
+ return self.model
226
+
227
+ @can_return_tuple
228
+ def forward(
229
+ self,
230
+ input_ids: Optional[torch.LongTensor] = None,
231
+ attention_mask: Optional[torch.Tensor] = None,
232
+ position_ids: Optional[torch.LongTensor] = None,
233
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
234
+ inputs_embeds: Optional[torch.FloatTensor] = None,
235
+ use_cache: Optional[bool] = None,
236
+ output_attentions: Optional[bool] = None,
237
+ output_hidden_states: Optional[bool] = None,
238
+ output_router_logits: Optional[bool] = None,
239
+ cache_position: Optional[torch.LongTensor] = None,
240
+ logits_to_keep: Union[int, torch.Tensor] = 0,
241
+ **kwargs: Unpack[KwargsForCausalLM],
242
+ ) -> MoeCausalLMOutputWithPast:
243
+
244
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
245
+ output_router_logits = (
246
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
247
+ )
248
+
249
+ output_hidden_states = (
250
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
251
+ )
252
+
253
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
254
+ outputs: MoeModelOutputWithPast = self.model(
255
+ input_ids=input_ids,
256
+ attention_mask=attention_mask,
257
+ position_ids=position_ids,
258
+ past_key_values=past_key_values,
259
+ inputs_embeds=inputs_embeds,
260
+ use_cache=use_cache,
261
+ output_attentions=output_attentions,
262
+ output_hidden_states=output_hidden_states,
263
+ output_router_logits=output_router_logits,
264
+ cache_position=cache_position,
265
+ **kwargs,
266
+ )
267
+
268
+ hidden_states = outputs.last_hidden_state
269
+ # Only compute necessary logits, and do not upcast them to float
270
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
271
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
272
+
273
+ return MoeCausalLMOutputWithPast(
274
+ loss=None,
275
+ aux_loss=None,
276
+ logits=logits,
277
+ past_key_values=outputs.past_key_values,
278
+ hidden_states=outputs.hidden_states,
279
+ attentions=outputs.attentions,
280
+ router_logits=outputs.router_logits,
281
+ )
282
+
283
+ __all__ = [
284
+ "SmallThinkerForCausalLM",
285
+ "SmallThinkerModel",
286
+ "SmallThinkerPreTrainedModel"
287
+ ]
modular_smallthinker.py ADDED
@@ -0,0 +1,407 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Callable, Optional, Tuple
2
+
3
+ import torch
4
+ import torch.nn.functional as F
5
+ from torch import nn
6
+
7
+ from transformers.cache_utils import Cache
8
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
9
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
10
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
11
+ from transformers.processing_utils import Unpack
12
+ from transformers.utils import logging
13
+ from .configuration_smallthinker import SmallThinkerConfig
14
+
15
+
16
+ logger = logging.get_logger(__name__)
17
+
18
+
19
+ @torch.jit.script
20
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
21
+ """
22
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
23
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
24
+ """
25
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
26
+ if n_rep == 1:
27
+ return hidden_states
28
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
29
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
30
+
31
+
32
+ def rotate_half(x):
33
+ """Rotates half the hidden dims of the input."""
34
+ x1 = x[..., : x.shape[-1] // 2]
35
+ x2 = x[..., x.shape[-1] // 2 :]
36
+ return torch.cat((-x2, x1), dim=-1)
37
+
38
+
39
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
40
+ """Applies Rotary Position Embedding to the query and key tensors.
41
+
42
+ Args:
43
+ q (`torch.Tensor`): The query tensor.
44
+ k (`torch.Tensor`): The key tensor.
45
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
46
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
47
+ position_ids (`torch.Tensor`, *optional*):
48
+ Deprecated and unused.
49
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
50
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
51
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
52
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
53
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
54
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
55
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
56
+ Returns:
57
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
58
+ """
59
+ cos = cos.unsqueeze(unsqueeze_dim)
60
+ sin = sin.unsqueeze(unsqueeze_dim)
61
+ q_embed = (q * cos) + (rotate_half(q) * sin)
62
+ k_embed = (k * cos) + (rotate_half(k) * sin)
63
+ return q_embed, k_embed
64
+
65
+
66
+ def check_is_swa_layer(config, layer_idx):
67
+ """
68
+ Check if the current layer is a sliding window attention layer.
69
+ """
70
+ if not hasattr(config, "sliding_window_layout"):
71
+ return False
72
+ elif config.sliding_window_layout is None:
73
+ return False
74
+ else:
75
+ return config.sliding_window_layout[layer_idx] == 1
76
+
77
+
78
+ class SmallThinkerRMSNorm(nn.Module):
79
+ def __init__(self, hidden_size, eps=1e-6):
80
+ """
81
+ SmallThinkerRMSNorm is equivalent to T5LayerNorm
82
+ """
83
+ super().__init__()
84
+ self.weight = nn.Parameter(torch.ones(hidden_size))
85
+ self.variance_epsilon = eps
86
+
87
+ def forward(self, hidden_states):
88
+ input_dtype = hidden_states.dtype
89
+ hidden_states = hidden_states.to(torch.float32)
90
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
91
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
92
+ return self.weight * hidden_states.to(input_dtype)
93
+
94
+ def extra_repr(self):
95
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
96
+
97
+
98
+ class SmallThinkerRotaryEmbedding(nn.Module):
99
+ def __init__(self, config: SmallThinkerConfig, device=None):
100
+ super().__init__()
101
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
102
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
103
+ else:
104
+ self.rope_type = "default"
105
+ self.max_seq_len_cached = config.max_position_embeddings
106
+ self.original_max_seq_len = config.max_position_embeddings
107
+
108
+ self.config = config
109
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
110
+
111
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
112
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
113
+ self.original_inv_freq = self.inv_freq
114
+
115
+ @torch.no_grad()
116
+ @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
117
+ def forward(self, x, position_ids):
118
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
119
+ position_ids_expanded = position_ids[:, None, :].float()
120
+
121
+ device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
122
+ with torch.autocast(device_type=device_type, enabled=False): # Force float32
123
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
124
+ emb = torch.cat((freqs, freqs), dim=-1)
125
+ cos = emb.cos() * self.attention_scaling
126
+ sin = emb.sin() * self.attention_scaling
127
+
128
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
129
+
130
+
131
+ class SmallThinkerExpert(nn.Module):
132
+ def __init__(self, config: SmallThinkerConfig):
133
+ super().__init__()
134
+ self.hidden_dim = config.hidden_size
135
+ self.ffn_dim = config.moe_ffn_hidden_size
136
+
137
+ self.up = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
138
+ self.gate = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
139
+ self.down = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
140
+
141
+ def forward(self, hidden_states: torch.Tensor):
142
+ current_hidden_states = self.up(hidden_states) * F.relu(self.gate(hidden_states))
143
+ batch_size, _ = current_hidden_states.shape
144
+ current_hidden_states = current_hidden_states.view(batch_size, -1)
145
+ current_hidden_states = self.down(current_hidden_states)
146
+ return current_hidden_states
147
+
148
+
149
+ class SmallThinkerMoeBlock(nn.Module):
150
+ def __init__(self, config: SmallThinkerConfig):
151
+ super().__init__()
152
+ self.hidden_dim = config.hidden_size
153
+ self.num_primary_experts = config.moe_num_primary_experts
154
+ self.moe_primary_router_apply_softmax = config.moe_primary_router_apply_softmax
155
+ self.num_active_primary_experts = config.moe_num_active_primary_experts
156
+ self.primary_router = nn.Linear(self.hidden_dim, self.num_primary_experts, bias=False)
157
+ self.experts = nn.ModuleList([SmallThinkerExpert(config) for _ in range(self.num_primary_experts)])
158
+
159
+ def forward(self, router_input: torch.Tensor, hidden_states: torch.Tensor) -> torch.Tensor:
160
+ batch_size, sequence_length, hidden_dim = hidden_states.shape
161
+ # Flatten the tokens into (bs * sl, hidden_dim)
162
+ hidden_states = hidden_states.view(-1, hidden_dim)
163
+ router_input = router_input.view(-1, hidden_dim)
164
+ # Primary router logits: (bs * sl, n_experts)
165
+ router_logits = self.primary_router(router_input)
166
+
167
+ router_logits, selected_experts = torch.topk(router_logits, self.num_active_primary_experts, dim=-1)
168
+
169
+ if self.moe_primary_router_apply_softmax:
170
+ routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
171
+ else:
172
+ routing_weights = F.sigmoid(router_logits)
173
+ routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
174
+
175
+ routing_weights = routing_weights.to(hidden_states.dtype)
176
+
177
+ # Prepare the final tensor
178
+ final_hidden_states = torch.zeros(
179
+ (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
180
+ )
181
+
182
+ # One hot encode the selected experts to create an expert mask
183
+ # this will be used to easily index which expert is going to be sollicitated
184
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_primary_experts).permute(2, 1, 0)
185
+ expert_hitted = (expert_mask.sum(dim=(-1, -2)) > 0).nonzero(as_tuple=True)[0].tolist()
186
+
187
+ for expert_idx in expert_hitted:
188
+ expert_layer = self.experts[expert_idx]
189
+ idx, top_x = torch.where(expert_mask[expert_idx])
190
+ # Index the correct hidden states and compute the expert hidden state for
191
+ # the current expert. We need to make sure to multiply the output hidden
192
+ # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
193
+ current_state = hidden_states[top_x].reshape(-1, hidden_dim)
194
+ current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
195
+
196
+ # However `index_add_` only support torch tensors for indexing so we'll use the `top_x` tensor here.
197
+ final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
198
+ final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
199
+ return final_hidden_states, router_logits
200
+
201
+
202
+ def eager_attention_forward(
203
+ module: nn.Module,
204
+ query: torch.Tensor,
205
+ key: torch.Tensor,
206
+ value: torch.Tensor,
207
+ attention_mask: Optional[torch.Tensor],
208
+ scaling: float,
209
+ dropout: float = 0.0,
210
+ **kwargs,
211
+ ):
212
+ key_states = repeat_kv(key, module.num_key_value_groups)
213
+ value_states = repeat_kv(value, module.num_key_value_groups)
214
+
215
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
216
+ if attention_mask is not None:
217
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
218
+ attn_weights = attn_weights + causal_mask
219
+
220
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
221
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
222
+ attn_output = torch.matmul(attn_weights, value_states)
223
+ attn_output = attn_output.transpose(1, 2).contiguous()
224
+
225
+ return attn_output, attn_weights
226
+
227
+
228
+ class SmallThinkerAttention(nn.Module):
229
+ def __init__(self, config: SmallThinkerConfig, layer_idx: int):
230
+ super().__init__()
231
+ self.config = config
232
+ self.layer_idx = layer_idx
233
+ self.head_dim = config.head_dim
234
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
235
+ self.scaling = self.head_dim**-0.5
236
+ self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False)
237
+ self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
238
+ self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
239
+ self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
240
+ self.sliding_window = config.sliding_window_size if config.sliding_window_layout[layer_idx] else None
241
+
242
+ def forward(
243
+ self,
244
+ hidden_states: torch.Tensor,
245
+ position_embeddings: Tuple[torch.Tensor, torch.Tensor],
246
+ attention_mask: Optional[torch.Tensor],
247
+ past_key_value: Optional[Cache] = None,
248
+ cache_position: Optional[torch.LongTensor] = None,
249
+ **kwargs: Unpack[FlashAttentionKwargs],
250
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
251
+
252
+ input_shape = hidden_states.shape[:-1]
253
+ hidden_shape = (*input_shape, -1, self.head_dim)
254
+
255
+ query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
256
+ key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
257
+ value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
258
+
259
+ if position_embeddings:
260
+ cos, sin = position_embeddings
261
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
262
+ else:
263
+ cos, sin = None, None
264
+
265
+ if past_key_value is not None:
266
+ cache_kwargs = {
267
+ "sin": sin,
268
+ "cos": cos,
269
+ "cache_position": cache_position,
270
+ "sliding_window": self.sliding_window,
271
+ }
272
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
273
+
274
+ attention_interface: Callable = eager_attention_forward
275
+ if self.config._attn_implementation != "eager":
276
+ if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
277
+ logger.warning_once(
278
+ "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
279
+ 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
280
+ )
281
+ else:
282
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
283
+
284
+ attn_output, attn_weights = attention_interface(
285
+ self,
286
+ query_states,
287
+ key_states,
288
+ value_states,
289
+ attention_mask,
290
+ dropout=0.0,
291
+ scaling=self.scaling,
292
+ sliding_window=self.sliding_window,
293
+ **kwargs,
294
+ )
295
+
296
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
297
+ attn_output = self.o_proj(attn_output)
298
+ return attn_output, attn_weights
299
+
300
+
301
+ class SmallThinkerDecoderLayer(nn.Module):
302
+ def __init__(self, config: SmallThinkerConfig, layer_idx: int):
303
+ super().__init__()
304
+ self.hidden_size = config.hidden_size
305
+ self.self_attn = SmallThinkerAttention(config, layer_idx)
306
+ self.block_sparse_moe = SmallThinkerMoeBlock(config)
307
+ self.input_layernorm = SmallThinkerRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
308
+ self.post_attention_layernorm = SmallThinkerRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
309
+ self.is_swa = check_is_swa_layer(config, layer_idx)
310
+
311
+ if self.is_swa and config._attn_implementation == "sdpa":
312
+ logger.warning_once(
313
+ f"Sliding Window Attention is enabled but not optimized for `{config._attn_implementation}`; "
314
+ "unexpected results may be encountered."
315
+ )
316
+
317
+ def forward(
318
+ self,
319
+ hidden_states: torch.Tensor,
320
+ attention_mask: Optional[torch.Tensor] = None,
321
+ position_ids: Optional[torch.LongTensor] = None,
322
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
323
+ output_attentions: Optional[bool] = False,
324
+ output_router_logits: Optional[bool] = False,
325
+ use_cache: Optional[bool] = False,
326
+ cache_position: Optional[torch.LongTensor] = None,
327
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
328
+ **kwargs: Unpack[FlashAttentionKwargs],
329
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
330
+ """
331
+ Args:
332
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
333
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
334
+ `(batch, sequence_length)` where padding elements are indicated by 0.
335
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
336
+ output_attentions (`bool`, *optional*):
337
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
338
+ returned tensors for more detail.
339
+ output_router_logits (`bool`, *optional*):
340
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
341
+ should not be returned during inference.
342
+ use_cache (`bool`, *optional*):
343
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
344
+ (see `past_key_values`).
345
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
346
+ Indices depicting the position of the input sequence tokens in the sequence.
347
+ kwargs (`dict`, *optional*):
348
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
349
+ into the model
350
+ """
351
+ residual = hidden_states
352
+ router_input = hidden_states
353
+ hidden_states = self.input_layernorm(hidden_states)
354
+ # Self Attention
355
+ hidden_states, self_attn_weights = self.self_attn(
356
+ hidden_states=hidden_states,
357
+ position_embeddings=position_embeddings,
358
+ attention_mask=attention_mask,
359
+ position_ids=position_ids,
360
+ past_key_value=past_key_value,
361
+ output_attentions=output_attentions,
362
+ use_cache=use_cache,
363
+ cache_position=cache_position,
364
+ **kwargs,
365
+ )
366
+ hidden_states = residual + hidden_states
367
+
368
+ # Fully Connected
369
+ residual = hidden_states
370
+ hidden_states = self.post_attention_layernorm(hidden_states)
371
+ hidden_states, router_logits = self.block_sparse_moe(router_input, hidden_states)
372
+ hidden_states = residual + hidden_states
373
+
374
+ outputs = (hidden_states,)
375
+ if output_attentions:
376
+ outputs += (self_attn_weights,)
377
+ if output_router_logits:
378
+ outputs += (router_logits,)
379
+ return outputs
380
+
381
+
382
+ class SmallThinkerPreTrainedModel(PreTrainedModel):
383
+ config_class = SmallThinkerConfig
384
+ base_model_prefix = "model"
385
+ supports_gradient_checkpointing = False
386
+ _no_split_modules = ["SmallThinkerDecoderLayer"]
387
+ _skip_keys_device_placement = ["past_key_values"]
388
+ _supports_flash_attn_2 = True
389
+ _supports_sdpa = True
390
+ _supports_flex_attn = False
391
+ _supports_cache_class = True
392
+ _supports_quantized_cache = True
393
+ _supports_static_cache = False
394
+ _supports_attention_backend = True
395
+
396
+ def _init_weights(self, module):
397
+ std = self.config.initializer_range
398
+ if isinstance(module, nn.Linear):
399
+ module.weight.data.normal_(mean=0.0, std=std)
400
+ if module.bias is not None:
401
+ module.bias.data.zero_()
402
+ elif isinstance(module, nn.Embedding):
403
+ module.weight.data.normal_(mean=0.0, std=std)
404
+ if module.padding_idx is not None:
405
+ module.weight.data[module.padding_idx].zero_()
406
+ elif isinstance(module, SmallThinkerRMSNorm):
407
+ module.weight.data.fill_(1.0)
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
tokenizer_config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are SmallThinker. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are SmallThinker. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "model_max_length": 131072,
203
+ "pad_token": "<|endoftext|>",
204
+ "split_special_tokens": false,
205
+ "tokenizer_class": "Qwen2Tokenizer",
206
+ "unk_token": null
207
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff