metadata
language:
- ko
datasets:
- kyujinpy/Ko-various-dataset
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0
⭐My custom LLM 13B⭐
Model Details
Model Developers
- Kyujin Han (kyujinpy)
Model Architecture
- My custom LLM 13B is an auto-regressive language model based on the LLaMA2 transformer architecture.
Base Model
Training Dataset
Model comparisons
Ko-LLM leaderboard(11/27; link)
Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
---|---|---|---|---|---|---|
⭐My custom LLM 13B-v1⭐ | 50.19 | 45.99 | 56.93 | 41.78 | 41.66 | 64.58 |
⭐My custom LLM 13B v2⭐ | 48.28 | 45.73 | 56.97 | 38.77 | 38.75 | 61.16 |
⭐My custom LLM 13B v3⭐ | NaN | NaN | NaN | NaN | NaN | NaN |
Implementation Code
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "PracticeLLM/Custom-KoLLM-13B-v3"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)