layoutlm_qa / README.md
PrimWong's picture
End of training
30b5531
|
raw
history blame
5.87 kB
---
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv2-base-uncased
tags:
- generated_from_trainer
model-index:
- name: layoutlm_qa
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlm_qa
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 4.7055
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 5.2983 | 0.22 | 50 | 4.5220 |
| 4.4844 | 0.44 | 100 | 4.1165 |
| 4.1775 | 0.66 | 150 | 3.8581 |
| 3.8202 | 0.88 | 200 | 3.5512 |
| 3.5174 | 1.11 | 250 | 3.9044 |
| 3.3304 | 1.33 | 300 | 3.3451 |
| 3.1339 | 1.55 | 350 | 3.0255 |
| 2.9657 | 1.77 | 400 | 2.9532 |
| 2.7647 | 1.99 | 450 | 3.0166 |
| 2.3376 | 2.21 | 500 | 2.9174 |
| 1.9903 | 2.43 | 550 | 2.7034 |
| 1.9975 | 2.65 | 600 | 2.4877 |
| 1.8642 | 2.88 | 650 | 2.3439 |
| 1.6613 | 3.1 | 700 | 2.3873 |
| 1.4884 | 3.32 | 750 | 2.1284 |
| 1.3033 | 3.54 | 800 | 2.3192 |
| 1.3821 | 3.76 | 850 | 3.0033 |
| 1.4121 | 3.98 | 900 | 2.3074 |
| 1.0226 | 4.2 | 950 | 2.5772 |
| 0.8721 | 4.42 | 1000 | 2.8909 |
| 1.1364 | 4.65 | 1050 | 2.6966 |
| 1.1504 | 4.87 | 1100 | 2.7247 |
| 0.7333 | 5.09 | 1150 | 3.3075 |
| 0.7097 | 5.31 | 1200 | 3.2459 |
| 0.7138 | 5.53 | 1250 | 3.2652 |
| 0.6852 | 5.75 | 1300 | 3.0537 |
| 0.6396 | 5.97 | 1350 | 3.1964 |
| 0.6756 | 6.19 | 1400 | 3.3380 |
| 0.5771 | 6.42 | 1450 | 3.4396 |
| 0.6753 | 6.64 | 1500 | 3.0820 |
| 0.5361 | 6.86 | 1550 | 3.3736 |
| 0.5659 | 7.08 | 1600 | 3.3211 |
| 0.6637 | 7.3 | 1650 | 3.2642 |
| 0.5321 | 7.52 | 1700 | 3.3275 |
| 0.3525 | 7.74 | 1750 | 3.5490 |
| 0.4964 | 7.96 | 1800 | 3.5147 |
| 0.4882 | 8.19 | 1850 | 3.4210 |
| 0.3879 | 8.41 | 1900 | 3.9024 |
| 0.4991 | 8.63 | 1950 | 3.5269 |
| 0.5084 | 8.85 | 2000 | 3.7400 |
| 0.3502 | 9.07 | 2050 | 3.6098 |
| 0.2492 | 9.29 | 2100 | 3.8580 |
| 0.2889 | 9.51 | 2150 | 3.6365 |
| 0.2672 | 9.73 | 2200 | 3.5260 |
| 0.4289 | 9.96 | 2250 | 3.1862 |
| 0.1803 | 10.18 | 2300 | 3.9092 |
| 0.2014 | 10.4 | 2350 | 3.8147 |
| 0.3197 | 10.62 | 2400 | 3.7593 |
| 0.1503 | 10.84 | 2450 | 3.8731 |
| 0.1766 | 11.06 | 2500 | 3.6034 |
| 0.3074 | 11.28 | 2550 | 3.6639 |
| 0.1637 | 11.5 | 2600 | 3.9461 |
| 0.2674 | 11.73 | 2650 | 3.6418 |
| 0.2074 | 11.95 | 2700 | 3.7350 |
| 0.1034 | 12.17 | 2750 | 4.0971 |
| 0.1438 | 12.39 | 2800 | 3.8840 |
| 0.0739 | 12.61 | 2850 | 3.9797 |
| 0.2329 | 12.83 | 2900 | 4.0602 |
| 0.2348 | 13.05 | 2950 | 3.9343 |
| 0.1119 | 13.27 | 3000 | 4.2030 |
| 0.0955 | 13.5 | 3050 | 4.3291 |
| 0.0787 | 13.72 | 3100 | 4.1507 |
| 0.1446 | 13.94 | 3150 | 4.1370 |
| 0.0202 | 14.16 | 3200 | 4.2964 |
| 0.1201 | 14.38 | 3250 | 4.3851 |
| 0.0783 | 14.6 | 3300 | 4.2924 |
| 0.0536 | 14.82 | 3350 | 4.2803 |
| 0.1042 | 15.04 | 3400 | 4.2722 |
| 0.1374 | 15.27 | 3450 | 4.3609 |
| 0.096 | 15.49 | 3500 | 4.3868 |
| 0.0223 | 15.71 | 3550 | 4.3771 |
| 0.0573 | 15.93 | 3600 | 4.4002 |
| 0.0688 | 16.15 | 3650 | 4.4771 |
| 0.0052 | 16.37 | 3700 | 4.5400 |
| 0.0128 | 16.59 | 3750 | 4.5740 |
| 0.0913 | 16.81 | 3800 | 4.6113 |
| 0.0783 | 17.04 | 3850 | 4.2686 |
| 0.0344 | 17.26 | 3900 | 4.3120 |
| 0.0064 | 17.48 | 3950 | 4.4239 |
| 0.1358 | 17.7 | 4000 | 4.5027 |
| 0.0299 | 17.92 | 4050 | 4.5290 |
| 0.0157 | 18.14 | 4100 | 4.6270 |
| 0.0141 | 18.36 | 4150 | 4.6847 |
| 0.0382 | 18.58 | 4200 | 4.6527 |
| 0.0069 | 18.81 | 4250 | 4.5969 |
| 0.0698 | 19.03 | 4300 | 4.6249 |
| 0.0303 | 19.25 | 4350 | 4.6679 |
| 0.0076 | 19.47 | 4400 | 4.7096 |
| 0.0161 | 19.69 | 4450 | 4.7129 |
| 0.0572 | 19.91 | 4500 | 4.7055 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0