metadata
license: apache-2.0
base_model: google/electra-small-discriminator
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- accuracy
- precision
- recall
model-index:
- name: electra-3-epoch-sentiment
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
config: sentiment
split: test
args: sentiment
metrics:
- name: Accuracy
type: accuracy
value: 0.6884565288179746
- name: Precision
type: precision
value: 0.6917205994992218
- name: Recall
type: recall
value: 0.6884565288179746
electra-3-epoch-sentiment
This model is a fine-tuned version of google/electra-small-discriminator on the tweet_eval dataset. It achieves the following results on the evaluation set:
- Loss: 0.7153
- Accuracy: 0.6885
- Precision: 0.6917
- Recall: 0.6885
- Micro-avg-recall: 0.6885
- Micro-avg-precision: 0.6885
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Micro-avg-recall | Micro-avg-precision |
---|---|---|---|---|---|---|---|---|
0.6307 | 1.0 | 2851 | 0.6867 | 0.6997 | 0.6998 | 0.6997 | 0.6997 | 0.6997 |
0.6717 | 2.0 | 5702 | 0.7312 | 0.6820 | 0.6877 | 0.6820 | 0.6820 | 0.6820 |
0.5799 | 3.0 | 8553 | 0.7153 | 0.6885 | 0.6917 | 0.6885 | 0.6885 | 0.6885 |
Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3