Priyanka-Balivada's picture
electra-3-epoch-sentiment
b1154e1
|
raw
history blame
2.42 kB
metadata
license: apache-2.0
base_model: google/electra-small-discriminator
tags:
  - generated_from_trainer
datasets:
  - tweet_eval
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: electra-3-epoch-sentiment
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: tweet_eval
          type: tweet_eval
          config: sentiment
          split: test
          args: sentiment
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6884565288179746
          - name: Precision
            type: precision
            value: 0.6917205994992218
          - name: Recall
            type: recall
            value: 0.6884565288179746

electra-3-epoch-sentiment

This model is a fine-tuned version of google/electra-small-discriminator on the tweet_eval dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7153
  • Accuracy: 0.6885
  • Precision: 0.6917
  • Recall: 0.6885
  • Micro-avg-recall: 0.6885
  • Micro-avg-precision: 0.6885

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall Micro-avg-recall Micro-avg-precision
0.6307 1.0 2851 0.6867 0.6997 0.6998 0.6997 0.6997 0.6997
0.6717 2.0 5702 0.7312 0.6820 0.6877 0.6820 0.6820 0.6820
0.5799 3.0 8553 0.7153 0.6885 0.6917 0.6885 0.6885 0.6885

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3