Priyanka-Balivada's picture
electra-5-epoch-sentiment
31e9279
|
raw
history blame
2.68 kB
metadata
license: apache-2.0
base_model: google/electra-small-discriminator
tags:
  - generated_from_trainer
datasets:
  - tweet_eval
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: electra-5-epoch-sentiment
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: tweet_eval
          type: tweet_eval
          config: sentiment
          split: test
          args: sentiment
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6893520026050146
          - name: Precision
            type: precision
            value: 0.6913776305729754
          - name: Recall
            type: recall
            value: 0.6893520026050146

electra-5-epoch-sentiment

This model is a fine-tuned version of google/electra-small-discriminator on the tweet_eval dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7949
  • Accuracy: 0.6894
  • Precision: 0.6914
  • Recall: 0.6894
  • Micro-avg-recall: 0.6894
  • Micro-avg-precision: 0.6894

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall Micro-avg-recall Micro-avg-precision
0.5949 1.0 2851 0.6963 0.6926 0.6943 0.6926 0.6926 0.6926
0.6502 2.0 5702 0.7348 0.6911 0.6929 0.6911 0.6911 0.6911
0.556 3.0 8553 0.7322 0.6943 0.6952 0.6943 0.6943 0.6943
0.4561 4.0 11404 0.7601 0.6895 0.6916 0.6895 0.6895 0.6895
0.471 5.0 14255 0.7949 0.6894 0.6914 0.6894 0.6894 0.6894

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3