Priyanka-Balivada's picture
Upload tokenizer
3da83b0 verified
|
raw
history blame
2.68 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - tweet_eval
metrics:
  - accuracy
  - precision
  - recall
base_model: google/electra-small-discriminator
model-index:
  - name: electra-5-epoch-sentiment
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: tweet_eval
          type: tweet_eval
          config: sentiment
          split: test
          args: sentiment
        metrics:
          - type: accuracy
            value: 0.6893520026050146
            name: Accuracy
          - type: precision
            value: 0.6913776305729754
            name: Precision
          - type: recall
            value: 0.6893520026050146
            name: Recall

electra-5-epoch-sentiment

This model is a fine-tuned version of google/electra-small-discriminator on the tweet_eval dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7949
  • Accuracy: 0.6894
  • Precision: 0.6914
  • Recall: 0.6894
  • Micro-avg-recall: 0.6894
  • Micro-avg-precision: 0.6894

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall Micro-avg-recall Micro-avg-precision
0.5949 1.0 2851 0.6963 0.6926 0.6943 0.6926 0.6926 0.6926
0.6502 2.0 5702 0.7348 0.6911 0.6929 0.6911 0.6911 0.6911
0.556 3.0 8553 0.7322 0.6943 0.6952 0.6943 0.6943 0.6943
0.4561 4.0 11404 0.7601 0.6895 0.6916 0.6895 0.6895 0.6895
0.471 5.0 14255 0.7949 0.6894 0.6914 0.6894 0.6894 0.6894

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3