|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- tweet_eval |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
base_model: google/electra-small-discriminator |
|
model-index: |
|
- name: electra-5-epoch-sentiment |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: tweet_eval |
|
type: tweet_eval |
|
config: sentiment |
|
split: test |
|
args: sentiment |
|
metrics: |
|
- type: accuracy |
|
value: 0.6893520026050146 |
|
name: Accuracy |
|
- type: precision |
|
value: 0.6913776305729754 |
|
name: Precision |
|
- type: recall |
|
value: 0.6893520026050146 |
|
name: Recall |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
TOKENIZER & TRAINER CORRUPTED |
|
|
|
# electra-5-epoch-sentiment |
|
|
|
This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on the tweet_eval dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7949 |
|
- Accuracy: 0.6894 |
|
- Precision: 0.6914 |
|
- Recall: 0.6894 |
|
- Micro-avg-recall: 0.6894 |
|
- Micro-avg-precision: 0.6894 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Micro-avg-recall | Micro-avg-precision | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:----------------:|:-------------------:| |
|
| 0.5949 | 1.0 | 2851 | 0.6963 | 0.6926 | 0.6943 | 0.6926 | 0.6926 | 0.6926 | |
|
| 0.6502 | 2.0 | 5702 | 0.7348 | 0.6911 | 0.6929 | 0.6911 | 0.6911 | 0.6911 | |
|
| 0.556 | 3.0 | 8553 | 0.7322 | 0.6943 | 0.6952 | 0.6943 | 0.6943 | 0.6943 | |
|
| 0.4561 | 4.0 | 11404 | 0.7601 | 0.6895 | 0.6916 | 0.6895 | 0.6895 | 0.6895 | |
|
| 0.471 | 5.0 | 14255 | 0.7949 | 0.6894 | 0.6914 | 0.6894 | 0.6894 | 0.6894 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.0 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.13.3 |
|
|