swinv2-base-patch4-window8-256-for-pre_evaluation

This model is a fine-tuned version of microsoft/swinv2-base-patch4-window8-256 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4873
  • Accuracy: 0.4106

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6064 1.0 16 1.5189 0.3073
1.5058 2.0 32 1.5056 0.3073
1.5176 3.0 48 1.5176 0.2961
1.4883 4.0 64 1.5130 0.3073
1.4446 5.0 80 1.4540 0.3296
1.4568 6.0 96 1.5154 0.3156
1.4106 7.0 112 1.4272 0.3883
1.3804 8.0 128 1.4185 0.3743
1.3725 9.0 144 1.3943 0.3911
1.3441 10.0 160 1.4510 0.4022
1.3335 11.0 176 1.4337 0.3827
1.3055 12.0 192 1.4633 0.3855
1.3303 13.0 208 1.4674 0.3883
1.2882 14.0 224 1.4388 0.3911
1.2362 15.0 240 1.4676 0.3855
1.2572 16.0 256 1.4805 0.3799
1.2164 17.0 272 1.4717 0.3939
1.221 18.0 288 1.4354 0.4078
1.1713 19.0 304 1.4836 0.4078
1.18 20.0 320 1.4873 0.4106
1.1349 21.0 336 1.4853 0.3855
1.1138 22.0 352 1.4927 0.3966
1.1402 23.0 368 1.4672 0.3994
1.1183 24.0 384 1.5033 0.4022
1.0834 25.0 400 1.5448 0.3855
1.0515 26.0 416 1.5131 0.3939
1.0745 27.0 432 1.5314 0.3827
1.0332 28.0 448 1.5474 0.3939
1.0679 29.0 464 1.5327 0.3855
1.0295 30.0 480 1.5402 0.3855

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
40
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Prot10/swinv2-base-patch4-window8-256-for-pre_evaluation

Finetuned
(11)
this model