Upload folder using huggingface_hub
#1
by
sharpenb
- opened
- README.md +85 -0
- model.pt +3 -0
- smash_config.json +31 -0
- special_tokens_map.json +30 -0
- tokenization_internlm.py +240 -0
- tokenizer.model +3 -0
- tokenizer_config.json +44 -0
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
|
3 |
+
base_model: AI4Chem/ChemLLM-7B-Chat
|
4 |
+
metrics:
|
5 |
+
- memory_disk
|
6 |
+
- memory_inference
|
7 |
+
- inference_latency
|
8 |
+
- inference_throughput
|
9 |
+
- inference_CO2_emissions
|
10 |
+
- inference_energy_consumption
|
11 |
+
tags:
|
12 |
+
- pruna-ai
|
13 |
+
---
|
14 |
+
<!-- header start -->
|
15 |
+
<!-- 200823 -->
|
16 |
+
<div style="width: auto; margin-left: auto; margin-right: auto">
|
17 |
+
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
|
18 |
+
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
19 |
+
</a>
|
20 |
+
</div>
|
21 |
+
<!-- header end -->
|
22 |
+
|
23 |
+
[![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI)
|
24 |
+
[![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI)
|
25 |
+
[![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
|
26 |
+
[![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx)
|
27 |
+
|
28 |
+
# Simply make AI models cheaper, smaller, faster, and greener!
|
29 |
+
|
30 |
+
- Give a thumbs up if you like this model!
|
31 |
+
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
|
32 |
+
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
33 |
+
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
|
34 |
+
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
|
35 |
+
|
36 |
+
## Results
|
37 |
+
|
38 |
+
![image info](./plots.png)
|
39 |
+
|
40 |
+
**Frequently Asked Questions**
|
41 |
+
- ***How does the compression work?*** The model is compressed with quanto.
|
42 |
+
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
|
43 |
+
- ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
|
44 |
+
- ***What is the model format?*** We use safetensors.
|
45 |
+
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
|
46 |
+
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
|
47 |
+
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
48 |
+
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
|
49 |
+
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
|
50 |
+
|
51 |
+
## Setup
|
52 |
+
|
53 |
+
You can run the smashed model with these steps:
|
54 |
+
|
55 |
+
0. Check requirements from the original repo AI4Chem/ChemLLM-7B-Chat installed. In particular, check python, cuda, and transformers versions.
|
56 |
+
1. Make sure that you have installed quantization related packages.
|
57 |
+
```bash
|
58 |
+
pip install quanto
|
59 |
+
```
|
60 |
+
2. Load & run the model.
|
61 |
+
```python
|
62 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
63 |
+
IMPORTS
|
64 |
+
|
65 |
+
model = AutoModelForCausalLM.from_pretrained("PrunaAI/AI4Chem-ChemLLM-7B-Chat-QUANTO-int4bit-smashed", trust_remote_code=True, device_map='auto')
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained("AI4Chem/ChemLLM-7B-Chat")
|
67 |
+
|
68 |
+
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
|
69 |
+
|
70 |
+
outputs = model.generate(input_ids, max_new_tokens=216)
|
71 |
+
tokenizer.decode(outputs[0])
|
72 |
+
```
|
73 |
+
|
74 |
+
## Configurations
|
75 |
+
|
76 |
+
The configuration info are in `smash_config.json`.
|
77 |
+
|
78 |
+
## Credits & License
|
79 |
+
|
80 |
+
The license of the smashed model follows the license of the original model. Please check the license of the original model AI4Chem/ChemLLM-7B-Chat before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
|
81 |
+
|
82 |
+
## Want to compress other models?
|
83 |
+
|
84 |
+
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
|
85 |
+
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77bc44eeba47368f8a029fb0d4c8fd4a4af44e77be7c2dcc1a2ea69fa578324a
|
3 |
+
size 16012584250
|
smash_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"api_key": null,
|
3 |
+
"verify_url": "http://johnrachwan.pythonanywhere.com",
|
4 |
+
"smash_config": {
|
5 |
+
"pruners": "None",
|
6 |
+
"pruning_ratio": 0.0,
|
7 |
+
"factorizers": "None",
|
8 |
+
"quantizers": "['quanto']",
|
9 |
+
"weight_quantization_bits": "int4",
|
10 |
+
"output_deviation": 0.005,
|
11 |
+
"compilers": "None",
|
12 |
+
"static_batch": true,
|
13 |
+
"static_shape": true,
|
14 |
+
"controlnet": "None",
|
15 |
+
"unet_dim": 4,
|
16 |
+
"device": "cuda",
|
17 |
+
"cache_dir": "/ceph/hdd/staff/charpent/.cache/modelsl_q96m4c",
|
18 |
+
"batch_size": 1,
|
19 |
+
"model_name": "AI4Chem/ChemLLM-7B-Chat",
|
20 |
+
"task": "text_text_generation",
|
21 |
+
"max_batch_size": 1,
|
22 |
+
"qtype_weight": "torch.qint8",
|
23 |
+
"qtype_activation": "torch.quint8",
|
24 |
+
"qobserver": "<class 'torch.ao.quantization.observer.MinMaxObserver'>",
|
25 |
+
"qscheme": "torch.per_tensor_symmetric",
|
26 |
+
"qconfig": "x86",
|
27 |
+
"group_size": 128,
|
28 |
+
"damp_percent": 0.1,
|
29 |
+
"save_load_fn": "torch"
|
30 |
+
}
|
31 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenization_internlm.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) InternLM. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
|
21 |
+
"""Tokenization classes for IntermLM."""
|
22 |
+
import os
|
23 |
+
from shutil import copyfile
|
24 |
+
from typing import Any, Dict, List, Optional, Tuple
|
25 |
+
|
26 |
+
import sentencepiece as spm
|
27 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
28 |
+
from transformers.utils import logging
|
29 |
+
|
30 |
+
logger = logging.get_logger(__name__)
|
31 |
+
|
32 |
+
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
|
33 |
+
|
34 |
+
PRETRAINED_VOCAB_FILES_MAP = {}
|
35 |
+
|
36 |
+
|
37 |
+
class InternLMTokenizer(PreTrainedTokenizer):
|
38 |
+
"""
|
39 |
+
Construct a InternLM tokenizer. Based on byte-level Byte-Pair-Encoding.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_file (`str`):
|
43 |
+
Path to the vocabulary file.
|
44 |
+
"""
|
45 |
+
|
46 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
47 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
48 |
+
model_input_names = ["input_ids", "attention_mask"]
|
49 |
+
_auto_class = "AutoTokenizer"
|
50 |
+
|
51 |
+
def __init__(
|
52 |
+
self,
|
53 |
+
vocab_file,
|
54 |
+
unk_token="<unk>",
|
55 |
+
bos_token="<s>",
|
56 |
+
eos_token="</s>",
|
57 |
+
pad_token="</s>",
|
58 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
59 |
+
add_bos_token=True,
|
60 |
+
add_eos_token=False,
|
61 |
+
decode_with_prefix_space=False,
|
62 |
+
clean_up_tokenization_spaces=False,
|
63 |
+
**kwargs,
|
64 |
+
):
|
65 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
66 |
+
self.vocab_file = vocab_file
|
67 |
+
self.add_bos_token = add_bos_token
|
68 |
+
self.add_eos_token = add_eos_token
|
69 |
+
self.decode_with_prefix_space = decode_with_prefix_space
|
70 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
71 |
+
self.sp_model.Load(vocab_file)
|
72 |
+
self._no_prefix_space_tokens = None
|
73 |
+
super().__init__(
|
74 |
+
bos_token=bos_token,
|
75 |
+
eos_token=eos_token,
|
76 |
+
unk_token=unk_token,
|
77 |
+
pad_token=pad_token,
|
78 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
79 |
+
**kwargs,
|
80 |
+
)
|
81 |
+
|
82 |
+
""" Initialization"""
|
83 |
+
|
84 |
+
@property
|
85 |
+
def no_prefix_space_tokens(self):
|
86 |
+
if self._no_prefix_space_tokens is None:
|
87 |
+
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
|
88 |
+
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
|
89 |
+
return self._no_prefix_space_tokens
|
90 |
+
|
91 |
+
@property
|
92 |
+
def vocab_size(self):
|
93 |
+
"""Returns vocab size"""
|
94 |
+
return self.sp_model.get_piece_size()
|
95 |
+
|
96 |
+
@property
|
97 |
+
def bos_token_id(self) -> Optional[int]:
|
98 |
+
return self.sp_model.bos_id()
|
99 |
+
|
100 |
+
@property
|
101 |
+
def eos_token_id(self) -> Optional[int]:
|
102 |
+
return self.sp_model.eos_id()
|
103 |
+
|
104 |
+
def get_vocab(self):
|
105 |
+
"""Returns vocab as a dict"""
|
106 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
107 |
+
vocab.update(self.added_tokens_encoder)
|
108 |
+
return vocab
|
109 |
+
|
110 |
+
def _tokenize(self, text):
|
111 |
+
"""Returns a tokenized string."""
|
112 |
+
return self.sp_model.encode(text, out_type=str)
|
113 |
+
|
114 |
+
def _convert_token_to_id(self, token):
|
115 |
+
"""Converts a token (str) in an id using the vocab."""
|
116 |
+
return self.sp_model.piece_to_id(token)
|
117 |
+
|
118 |
+
def _convert_id_to_token(self, index):
|
119 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
120 |
+
token = self.sp_model.IdToPiece(index)
|
121 |
+
return token
|
122 |
+
|
123 |
+
def _maybe_add_prefix_space(self, tokens, decoded):
|
124 |
+
if tokens and tokens[0] not in self.no_prefix_space_tokens:
|
125 |
+
return " " + decoded
|
126 |
+
else:
|
127 |
+
return decoded
|
128 |
+
|
129 |
+
def convert_tokens_to_string(self, tokens):
|
130 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
131 |
+
current_sub_tokens = []
|
132 |
+
out_string = ""
|
133 |
+
prev_is_special = False
|
134 |
+
for token in tokens:
|
135 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
136 |
+
if token in self.all_special_tokens:
|
137 |
+
if not prev_is_special:
|
138 |
+
out_string += " "
|
139 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
140 |
+
prev_is_special = True
|
141 |
+
current_sub_tokens = []
|
142 |
+
else:
|
143 |
+
current_sub_tokens.append(token)
|
144 |
+
prev_is_special = False
|
145 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
146 |
+
out_string = self.clean_up_tokenization(out_string)
|
147 |
+
out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
|
148 |
+
return out_string[1:]
|
149 |
+
|
150 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
151 |
+
"""
|
152 |
+
Save the vocabulary and special tokens file to a directory.
|
153 |
+
|
154 |
+
Args:
|
155 |
+
save_directory (`str`):
|
156 |
+
The directory in which to save the vocabulary.
|
157 |
+
|
158 |
+
Returns:
|
159 |
+
`Tuple(str)`: Paths to the files saved.
|
160 |
+
"""
|
161 |
+
if not os.path.isdir(save_directory):
|
162 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
163 |
+
return
|
164 |
+
out_vocab_file = os.path.join(
|
165 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
166 |
+
)
|
167 |
+
|
168 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
169 |
+
copyfile(self.vocab_file, out_vocab_file)
|
170 |
+
elif not os.path.isfile(self.vocab_file):
|
171 |
+
with open(out_vocab_file, "wb") as fi:
|
172 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
173 |
+
fi.write(content_spiece_model)
|
174 |
+
|
175 |
+
return (out_vocab_file,)
|
176 |
+
|
177 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
178 |
+
if self.add_bos_token:
|
179 |
+
bos_token_ids = [self.bos_token_id]
|
180 |
+
else:
|
181 |
+
bos_token_ids = []
|
182 |
+
|
183 |
+
output = bos_token_ids + token_ids_0
|
184 |
+
|
185 |
+
if token_ids_1 is not None:
|
186 |
+
output = output + token_ids_1
|
187 |
+
|
188 |
+
if self.add_eos_token:
|
189 |
+
output = output + [self.eos_token_id]
|
190 |
+
|
191 |
+
return output
|
192 |
+
|
193 |
+
def get_special_tokens_mask(
|
194 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
195 |
+
) -> List[int]:
|
196 |
+
"""
|
197 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
198 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
199 |
+
|
200 |
+
Args:
|
201 |
+
token_ids_0 (`List[int]`):
|
202 |
+
List of IDs.
|
203 |
+
token_ids_1 (`List[int]`, *optional*):
|
204 |
+
Optional second list of IDs for sequence pairs.
|
205 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
206 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
207 |
+
|
208 |
+
Returns:
|
209 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
210 |
+
"""
|
211 |
+
if already_has_special_tokens:
|
212 |
+
return super().get_special_tokens_mask(
|
213 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
214 |
+
)
|
215 |
+
|
216 |
+
if token_ids_1 is None:
|
217 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
218 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
219 |
+
|
220 |
+
def create_token_type_ids_from_sequences(
|
221 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
222 |
+
) -> List[int]:
|
223 |
+
"""
|
224 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
225 |
+
use of token type ids, therefore a list of zeros is returned.
|
226 |
+
|
227 |
+
Args:
|
228 |
+
token_ids_0 (`List[int]`):
|
229 |
+
List of IDs.
|
230 |
+
token_ids_1 (`List[int]`, *optional*):
|
231 |
+
Optional second list of IDs for sequence pairs.
|
232 |
+
|
233 |
+
Returns:
|
234 |
+
`List[int]`: List of zeros.
|
235 |
+
"""
|
236 |
+
eos = [self.eos_token_id]
|
237 |
+
|
238 |
+
if token_ids_1 is None:
|
239 |
+
return len(token_ids_0 + eos) * [0]
|
240 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
|
3 |
+
size 1477754
|
tokenizer_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<unk>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
}
|
27 |
+
},
|
28 |
+
"auto_map": {
|
29 |
+
"AutoTokenizer": [
|
30 |
+
"tokenization_internlm.InternLMTokenizer",
|
31 |
+
null
|
32 |
+
]
|
33 |
+
},
|
34 |
+
"bos_token": "<s>",
|
35 |
+
"clean_up_tokenization_spaces": false,
|
36 |
+
"eos_token": "</s>",
|
37 |
+
"legacy": false,
|
38 |
+
"model_max_length": 1000000000000000019884624838656,
|
39 |
+
"pad_token": "</s>",
|
40 |
+
"padding_side": "left",
|
41 |
+
"split_special_tokens": false,
|
42 |
+
"tokenizer_class": "InternLMTokenizer",
|
43 |
+
"unk_token": "<unk>"
|
44 |
+
}
|