Upload folder using huggingface_hub

#1
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
3
+ base_model: BAAI/Aquila2-7B
4
+ metrics:
5
+ - memory_disk
6
+ - memory_inference
7
+ - inference_latency
8
+ - inference_throughput
9
+ - inference_CO2_emissions
10
+ - inference_energy_consumption
11
+ tags:
12
+ - pruna-ai
13
+ ---
14
+ <!-- header start -->
15
+ <!-- 200823 -->
16
+ <div style="width: auto; margin-left: auto; margin-right: auto">
17
+ <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
18
+ <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
19
+ </a>
20
+ </div>
21
+ <!-- header end -->
22
+
23
+ [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI)
24
+ [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI)
25
+ [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
26
+ [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx)
27
+
28
+ # Simply make AI models cheaper, smaller, faster, and greener!
29
+
30
+ - Give a thumbs up if you like this model!
31
+ - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
32
+ - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
33
+ - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
34
+ - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
35
+
36
+ ## Results
37
+
38
+ ![image info](./plots.png)
39
+
40
+ **Frequently Asked Questions**
41
+ - ***How does the compression work?*** The model is compressed with llm-int8.
42
+ - ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
43
+ - ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
44
+ - ***What is the model format?*** We use safetensors.
45
+ - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
46
+ - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
47
+ - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
48
+ - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
49
+ - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
50
+
51
+ ## Setup
52
+
53
+ You can run the smashed model with these steps:
54
+
55
+ 0. Check requirements from the original repo BAAI/Aquila2-7B installed. In particular, check python, cuda, and transformers versions.
56
+ 1. Make sure that you have installed quantization related packages.
57
+ ```bash
58
+ pip install transformers accelerate bitsandbytes>0.37.0
59
+ ```
60
+ 2. Load & run the model.
61
+ ```python
62
+ from transformers import AutoModelForCausalLM, AutoTokenizer
63
+
64
+
65
+ model = AutoModelForCausalLM.from_pretrained("PrunaAI/BAAI-Aquila2-7B-bnb-8bit-smashed", trust_remote_code=True, device_map='auto')
66
+ tokenizer = AutoTokenizer.from_pretrained("BAAI/Aquila2-7B")
67
+
68
+ input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
69
+
70
+ outputs = model.generate(input_ids, max_new_tokens=216)
71
+ tokenizer.decode(outputs[0])
72
+ ```
73
+
74
+ ## Configurations
75
+
76
+ The configuration info are in `smash_config.json`.
77
+
78
+ ## Credits & License
79
+
80
+ The license of the smashed model follows the license of the original model. Please check the license of the original model BAAI/Aquila2-7B before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
81
+
82
+ ## Want to compress other models?
83
+
84
+ - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
85
+ - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/ceph/hdd/staff/charpent/.cache/modelsko7f3y_5hum7au56",
3
+ "architectures": [
4
+ "AquilaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_aquila.AquilaConfig",
10
+ "AutoModelForCausalLM": "modeling_aquila.AquilaForCausalLM"
11
+ },
12
+ "bos_token_id": 143717,
13
+ "eos_token_id": 143718,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 4096,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 11008,
18
+ "max_position_embeddings": 8192,
19
+ "model_type": "aquila",
20
+ "num_attention_heads": 32,
21
+ "num_hidden_layers": 32,
22
+ "num_key_value_heads": 32,
23
+ "pretraining_tp": 1,
24
+ "quantization_config": {
25
+ "_load_in_4bit": false,
26
+ "_load_in_8bit": true,
27
+ "bnb_4bit_compute_dtype": "bfloat16",
28
+ "bnb_4bit_quant_storage": "uint8",
29
+ "bnb_4bit_quant_type": "fp4",
30
+ "bnb_4bit_use_double_quant": false,
31
+ "llm_int8_enable_fp32_cpu_offload": false,
32
+ "llm_int8_has_fp16_weight": false,
33
+ "llm_int8_skip_modules": [
34
+ "lm_head"
35
+ ],
36
+ "llm_int8_threshold": 6.0,
37
+ "load_in_4bit": false,
38
+ "load_in_8bit": true,
39
+ "quant_method": "bitsandbytes"
40
+ },
41
+ "rms_norm_eps": 1e-05,
42
+ "rope_scaling": null,
43
+ "rope_theta": 1000000.0,
44
+ "tie_word_embeddings": false,
45
+ "torch_dtype": "float16",
46
+ "transformers_version": "4.42.4",
47
+ "use_cache": true,
48
+ "vocab_size": 143973
49
+ }
configuration_aquila.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+
21
+ # Most of the source code is adapted from Llama's source code
22
+ """ Aquila model configuration"""
23
+
24
+ from transformers.configuration_utils import PretrainedConfig
25
+ from transformers.utils import logging
26
+
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+ AQUILA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
31
+
32
+
33
+ class AquilaConfig(PretrainedConfig):
34
+ r"""
35
+ This is the configuration class to store the configuration of a [`AquilaModel`]. It is used to instantiate an Aquila
36
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
37
+ defaults will yield a similar configuration to that of the Aquila-7B.
38
+
39
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
40
+ documentation from [`PretrainedConfig`] for more information.
41
+
42
+
43
+ Args:
44
+ vocab_size (`int`, *optional*, defaults to 143973):
45
+ Vocabulary size of the Aquila model. Defines the number of different tokens that can be represented by the
46
+ `inputs_ids` passed when calling [`AquilaModel`]
47
+ hidden_size (`int`, *optional*, defaults to 4096):
48
+ Dimension of the hidden representations.
49
+ intermediate_size (`int`, *optional*, defaults to 11008):
50
+ Dimension of the MLP representations.
51
+ num_hidden_layers (`int`, *optional*, defaults to 32):
52
+ Number of hidden layers in the Transformer decoder.
53
+ num_attention_heads (`int`, *optional*, defaults to 32):
54
+ Number of attention heads for each attention layer in the Transformer decoder.
55
+ num_key_value_heads (`int`, *optional*):
56
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
57
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
58
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
59
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
60
+ by meanpooling all the original heads within that group. For more details checkout [this
61
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
62
+ `num_attention_heads`.
63
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
64
+ The non-linear activation function (function or string) in the decoder.
65
+ max_position_embeddings (`int`, *optional*, defaults to 8192):
66
+ The maximum sequence length that this model might ever be used with.
67
+ initializer_range (`float`, *optional*, defaults to 0.02):
68
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
69
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
70
+ The epsilon used by the rms normalization layers.
71
+ use_cache (`bool`, *optional*, defaults to `True`):
72
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
73
+ relevant if `config.is_decoder=True`.
74
+ pad_token_id (`int`, *optional*):
75
+ Padding token id.
76
+ bos_token_id (`int`, *optional*, defaults to 1):
77
+ Beginning of stream token id.
78
+ eos_token_id (`int`, *optional*, defaults to 2):
79
+ End of stream token id.
80
+ pretraining_tp (`int`, *optional*, defaults to 1):
81
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
82
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is
83
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
84
+ issue](https://github.com/pytorch/pytorch/issues/76232).
85
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
86
+ Whether to tie weight embeddings
87
+ rope_theta (`float`, *optional*, defaults to 10000.0):
88
+ The base period of the RoPE embeddings.
89
+ rope_scaling (`Dict`, *optional*):
90
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
91
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
92
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
93
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
94
+ these scaling strategies behave:
95
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
96
+ experimental feature, subject to breaking API changes in future versions.
97
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
98
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
99
+ attention_dropout (`float`, *optional*, defaults to 0.0):
100
+ The dropout ratio for the attention probabilities.
101
+
102
+ ```python
103
+ >>> from transformers import AquilaModel, AquilaConfig
104
+
105
+ >>> # Initializing a Aquila aquila-7b style configuration
106
+ >>> configuration = AquilaConfig()
107
+
108
+ >>> # Initializing a model from the aquila-7b style configuration
109
+ >>> model = AquilaModel(configuration)
110
+
111
+ >>> # Accessing the model configuration
112
+ >>> configuration = model.config
113
+ ```"""
114
+
115
+ model_type = "aquila"
116
+ keys_to_ignore_at_inference = ["past_key_values"]
117
+
118
+ def __init__(
119
+ self,
120
+ vocab_size=143973,
121
+ hidden_size=4096,
122
+ intermediate_size=11008,
123
+ num_hidden_layers=32,
124
+ num_attention_heads=32,
125
+ num_key_value_heads=None,
126
+ hidden_act="silu",
127
+ max_position_embeddings=8192,
128
+ initializer_range=0.02,
129
+ rms_norm_eps=1e-6,
130
+ use_cache=True,
131
+ pad_token_id=None,
132
+ bos_token_id=1,
133
+ eos_token_id=2,
134
+ pretraining_tp=1,
135
+ tie_word_embeddings=False,
136
+ rope_theta=10000.0,
137
+ rope_scaling=None,
138
+ attention_bias=False,
139
+ attention_dropout=0.0,
140
+ **kwargs,
141
+ ):
142
+ self.vocab_size = vocab_size
143
+ self.max_position_embeddings = max_position_embeddings
144
+ self.hidden_size = hidden_size
145
+ self.intermediate_size = intermediate_size
146
+ self.num_hidden_layers = num_hidden_layers
147
+ self.num_attention_heads = num_attention_heads
148
+
149
+ # for backward compatibility
150
+ if num_key_value_heads is None:
151
+ num_key_value_heads = num_attention_heads
152
+
153
+ self.num_key_value_heads = num_key_value_heads
154
+ self.hidden_act = hidden_act
155
+ self.initializer_range = initializer_range
156
+ self.rms_norm_eps = rms_norm_eps
157
+ self.pretraining_tp = pretraining_tp
158
+ self.use_cache = use_cache
159
+ self.rope_theta = rope_theta
160
+ self.rope_scaling = rope_scaling
161
+ self._rope_scaling_validation()
162
+ self.attention_bias = attention_bias
163
+ self.attention_dropout = attention_dropout
164
+
165
+ super().__init__(
166
+ pad_token_id=pad_token_id,
167
+ bos_token_id=bos_token_id,
168
+ eos_token_id=eos_token_id,
169
+ tie_word_embeddings=tie_word_embeddings,
170
+ **kwargs,
171
+ )
172
+
173
+ def _rope_scaling_validation(self):
174
+ """
175
+ Validate the `rope_scaling` configuration.
176
+ """
177
+ if self.rope_scaling is None:
178
+ return
179
+
180
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
181
+ raise ValueError(
182
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
183
+ f"got {self.rope_scaling}"
184
+ )
185
+ rope_scaling_type = self.rope_scaling.get("type", None)
186
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
187
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
188
+ raise ValueError(
189
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
190
+ )
191
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
192
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 143717,
4
+ "eos_token_id": 143718,
5
+ "transformers_version": "4.42.4"
6
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08061fdcfcdb71d08ab3c14847c1c691fd5de906c4a07aec6d4ef858712e56e0
3
+ size 4983007104
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3cbd5a8a77ce039d29deb2b5737cb75be701060caac02a549cf0f33bb848ed0
3
+ size 3857879800
model.safetensors.index.json ADDED
@@ -0,0 +1,522 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 8840830976
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.0.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
21
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.0.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
23
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.1.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
33
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.1.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
35
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.1.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
37
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.1.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
39
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
44
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.10.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
46
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.10.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
49
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.10.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
51
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.10.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
53
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.10.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
55
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.11.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
58
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.11.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
60
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.11.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
62
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.11.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
65
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.11.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
67
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.11.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
69
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.11.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
71
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.12.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
74
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.12.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
76
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.12.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
78
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.12.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
81
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.12.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
83
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.12.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
85
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.12.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
87
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.13.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
90
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.13.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
92
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.13.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
94
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.13.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
97
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.13.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
99
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.13.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
101
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.13.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
103
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.14.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
106
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.14.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
108
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.14.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
110
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.14.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
113
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.14.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
115
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.14.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
117
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.14.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
119
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.15.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
122
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.15.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
124
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.15.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
126
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.15.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
129
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.15.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
131
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.15.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
133
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.15.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
135
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.16.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
138
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.16.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
140
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.16.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
142
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.16.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
145
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.16.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
147
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.16.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
149
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.16.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
151
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.17.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
154
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.17.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
156
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.17.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
158
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.17.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
161
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.17.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
163
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.17.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
165
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.17.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
167
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
169
+ "model.layers.18.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
170
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.18.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
172
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.18.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
174
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.18.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
177
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.18.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
179
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.18.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
181
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
182
+ "model.layers.18.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
183
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
185
+ "model.layers.19.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
186
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
187
+ "model.layers.19.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
188
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.19.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
190
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.19.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
193
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.19.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
195
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.19.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
197
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
198
+ "model.layers.19.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
199
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.2.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
202
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.2.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
204
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.2.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
206
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.2.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
209
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.2.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
211
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.2.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
213
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.2.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
215
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
217
+ "model.layers.20.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
218
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
219
+ "model.layers.20.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
220
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
221
+ "model.layers.20.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
222
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
223
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
224
+ "model.layers.20.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
225
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
226
+ "model.layers.20.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
227
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
228
+ "model.layers.20.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
229
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
230
+ "model.layers.20.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
231
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
232
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
233
+ "model.layers.21.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
234
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
235
+ "model.layers.21.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
236
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
237
+ "model.layers.21.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
238
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
239
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
240
+ "model.layers.21.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
241
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
242
+ "model.layers.21.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
243
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
244
+ "model.layers.21.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
245
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
246
+ "model.layers.21.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
247
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
248
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
249
+ "model.layers.22.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
250
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
251
+ "model.layers.22.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
252
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
253
+ "model.layers.22.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
254
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
255
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
256
+ "model.layers.22.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
257
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
258
+ "model.layers.22.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
259
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
260
+ "model.layers.22.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
261
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.22.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
263
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.23.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
266
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
267
+ "model.layers.23.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
268
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
269
+ "model.layers.23.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
270
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
271
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
272
+ "model.layers.23.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
273
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.23.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
275
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.23.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
277
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
278
+ "model.layers.23.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
279
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
281
+ "model.layers.24.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
282
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
283
+ "model.layers.24.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
284
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
285
+ "model.layers.24.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
286
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
287
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
288
+ "model.layers.24.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
289
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
290
+ "model.layers.24.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
291
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
292
+ "model.layers.24.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
293
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
294
+ "model.layers.24.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
295
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
296
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.25.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
298
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.25.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
300
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.25.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
302
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.25.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
305
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.25.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
307
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.25.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
309
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.25.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
311
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.26.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
314
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.26.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
316
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
317
+ "model.layers.26.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
318
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
319
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.26.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
321
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.26.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
323
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.26.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
325
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
326
+ "model.layers.26.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
327
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
329
+ "model.layers.27.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
330
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
331
+ "model.layers.27.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
332
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.27.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
334
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.27.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
337
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
338
+ "model.layers.27.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
339
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
+ "model.layers.27.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
341
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
+ "model.layers.27.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
343
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.28.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
346
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.28.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
348
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.28.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
350
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
352
+ "model.layers.28.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
353
+ "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
354
+ "model.layers.28.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
355
+ "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.28.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
357
+ "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.28.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
359
+ "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "model.layers.29.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
362
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.29.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
364
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
365
+ "model.layers.29.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
366
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
367
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
368
+ "model.layers.29.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
369
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
370
+ "model.layers.29.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
371
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
372
+ "model.layers.29.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
373
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
374
+ "model.layers.29.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
375
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
376
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
377
+ "model.layers.3.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
378
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
379
+ "model.layers.3.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
380
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.3.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
382
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.3.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
385
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
386
+ "model.layers.3.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
387
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.3.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
389
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
+ "model.layers.3.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
391
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
393
+ "model.layers.30.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
394
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
395
+ "model.layers.30.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
396
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
397
+ "model.layers.30.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
398
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
399
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
400
+ "model.layers.30.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
401
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
402
+ "model.layers.30.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
403
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
404
+ "model.layers.30.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
405
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
406
+ "model.layers.30.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
407
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
408
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
409
+ "model.layers.31.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
410
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
411
+ "model.layers.31.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
412
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
413
+ "model.layers.31.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
414
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
415
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
416
+ "model.layers.31.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
417
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
418
+ "model.layers.31.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
419
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
420
+ "model.layers.31.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
421
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
422
+ "model.layers.31.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
423
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
424
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
425
+ "model.layers.4.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
426
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
427
+ "model.layers.4.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
428
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.4.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
430
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.4.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
433
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
434
+ "model.layers.4.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
435
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
+ "model.layers.4.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
437
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
+ "model.layers.4.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
439
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
441
+ "model.layers.5.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
442
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
443
+ "model.layers.5.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
444
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
445
+ "model.layers.5.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
446
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
447
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
448
+ "model.layers.5.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
449
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
450
+ "model.layers.5.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
451
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
452
+ "model.layers.5.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
453
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
454
+ "model.layers.5.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
455
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
456
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
457
+ "model.layers.6.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
458
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
459
+ "model.layers.6.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
460
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
461
+ "model.layers.6.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
462
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
463
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
464
+ "model.layers.6.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
465
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
466
+ "model.layers.6.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
467
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
468
+ "model.layers.6.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
469
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
470
+ "model.layers.6.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
471
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
472
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
473
+ "model.layers.7.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
474
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
475
+ "model.layers.7.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
476
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
477
+ "model.layers.7.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
478
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
479
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
480
+ "model.layers.7.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
481
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
482
+ "model.layers.7.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
483
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
484
+ "model.layers.7.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
485
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
486
+ "model.layers.7.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
487
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
488
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
489
+ "model.layers.8.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
490
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
491
+ "model.layers.8.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
492
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
493
+ "model.layers.8.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
494
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
495
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
496
+ "model.layers.8.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
497
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
498
+ "model.layers.8.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
499
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
500
+ "model.layers.8.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
501
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
502
+ "model.layers.8.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
503
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
504
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
505
+ "model.layers.9.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
506
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
507
+ "model.layers.9.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
508
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
509
+ "model.layers.9.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
510
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
511
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
512
+ "model.layers.9.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
513
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
514
+ "model.layers.9.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
515
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
516
+ "model.layers.9.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
517
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
518
+ "model.layers.9.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
519
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
520
+ "model.norm.weight": "model-00002-of-00002.safetensors"
521
+ }
522
+ }
modeling_aquila.py ADDED
@@ -0,0 +1,1556 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+
21
+ # Most of the source code is adapted from Llama's source code
22
+ """PyTorch Aquila model."""
23
+
24
+ import math
25
+ import warnings
26
+ from typing import List, Optional, Tuple, Union
27
+
28
+ import torch
29
+ import torch.nn.functional as F
30
+ import torch.utils.checkpoint
31
+ from torch import nn
32
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
33
+
34
+ from transformers.activations import ACT2FN
35
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
36
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
37
+ from transformers.modeling_outputs import (
38
+ BaseModelOutputWithPast,
39
+ CausalLMOutputWithPast,
40
+ QuestionAnsweringModelOutput,
41
+ SequenceClassifierOutputWithPast,
42
+ )
43
+ from transformers.modeling_utils import PreTrainedModel
44
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
45
+ from transformers.utils import (
46
+ add_start_docstrings,
47
+ add_start_docstrings_to_model_forward,
48
+ is_flash_attn_2_available,
49
+ is_flash_attn_greater_or_equal_2_10,
50
+ logging,
51
+ replace_return_docstrings,
52
+ )
53
+ from .configuration_aquila import AquilaConfig
54
+
55
+
56
+ if is_flash_attn_2_available():
57
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
58
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
59
+
60
+
61
+ logger = logging.get_logger(__name__)
62
+
63
+ _CONFIG_FOR_DOC = "AquilaConfig"
64
+
65
+
66
+ def _get_unpad_data(attention_mask):
67
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
68
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
69
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
70
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
71
+ return (
72
+ indices,
73
+ cu_seqlens,
74
+ max_seqlen_in_batch,
75
+ )
76
+
77
+
78
+ class AquilaRMSNorm(nn.Module):
79
+ def __init__(self, hidden_size, eps=1e-6):
80
+ """
81
+ AquilaRMSNorm is equivalent to T5LayerNorm
82
+ """
83
+ super().__init__()
84
+ self.weight = nn.Parameter(torch.ones(hidden_size))
85
+ self.variance_epsilon = eps
86
+
87
+ def forward(self, hidden_states):
88
+ input_dtype = hidden_states.dtype
89
+ hidden_states = hidden_states.to(torch.float32)
90
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
91
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
92
+ return self.weight * hidden_states.to(input_dtype)
93
+
94
+
95
+ ALL_LAYERNORM_LAYERS.append(AquilaRMSNorm)
96
+
97
+
98
+ class AquilaRotaryEmbedding(nn.Module):
99
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
100
+ super().__init__()
101
+ self.scaling_factor = scaling_factor
102
+ self.dim = dim
103
+ self.max_position_embeddings = max_position_embeddings
104
+ self.base = base
105
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
106
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
107
+ # For BC we register cos and sin cached
108
+ self.max_seq_len_cached = max_position_embeddings
109
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
110
+ t = t / self.scaling_factor
111
+ freqs = torch.outer(t, self.inv_freq)
112
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
113
+ emb = torch.cat((freqs, freqs), dim=-1)
114
+ self.register_buffer("_cos_cached", emb.cos().to(torch.get_default_dtype()), persistent=False)
115
+ self.register_buffer("_sin_cached", emb.sin().to(torch.get_default_dtype()), persistent=False)
116
+
117
+ @property
118
+ def sin_cached(self):
119
+ logger.warning_once(
120
+ "The sin_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
121
+ "the forward method of RoPE from now on instead. It is not used in the `AquilaAttention` class"
122
+ )
123
+ return self._sin_cached
124
+
125
+ @property
126
+ def cos_cached(self):
127
+ logger.warning_once(
128
+ "The cos_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
129
+ "the forward method of RoPE from now on instead. It is not used in the `AquilaAttention` class"
130
+ )
131
+ return self._cos_cached
132
+
133
+ @torch.no_grad()
134
+ def forward(self, x, position_ids):
135
+ # x: [bs, num_attention_heads, seq_len, head_size]
136
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
137
+ position_ids_expanded = position_ids[:, None, :].float()
138
+ # Force float32 since bfloat16 loses precision on long contexts
139
+ # See https://github.com/huggingface/transformers/pull/29285
140
+ device_type = x.device.type
141
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
142
+ with torch.autocast(device_type=device_type, enabled=False):
143
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
144
+ emb = torch.cat((freqs, freqs), dim=-1)
145
+ cos = emb.cos()
146
+ sin = emb.sin()
147
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
148
+
149
+
150
+ class AquilaLinearScalingRotaryEmbedding(AquilaRotaryEmbedding):
151
+ """AquilaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
152
+
153
+ def forward(self, x, position_ids):
154
+ # difference to the original RoPE: a scaling factor is aplied to the position ids
155
+ position_ids = position_ids.float() / self.scaling_factor
156
+ cos, sin = super().forward(x, position_ids)
157
+ return cos, sin
158
+
159
+
160
+ class AquilaDynamicNTKScalingRotaryEmbedding(AquilaRotaryEmbedding):
161
+ """AquilaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
162
+
163
+ def forward(self, x, position_ids):
164
+ # difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
165
+ seq_len = torch.max(position_ids) + 1
166
+ if seq_len > self.max_position_embeddings:
167
+ base = self.base * (
168
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
169
+ ) ** (self.dim / (self.dim - 2))
170
+ inv_freq = 1.0 / (
171
+ base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim)
172
+ )
173
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
174
+
175
+ cos, sin = super().forward(x, position_ids)
176
+ return cos, sin
177
+
178
+
179
+ def rotate_half(x):
180
+ """Rotates half the hidden dims of the input."""
181
+ x1 = x[..., : x.shape[-1] // 2]
182
+ x2 = x[..., x.shape[-1] // 2 :]
183
+ return torch.cat((-x2, x1), dim=-1)
184
+
185
+
186
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
187
+ """Applies Rotary Position Embedding to the query and key tensors.
188
+
189
+ Args:
190
+ q (`torch.Tensor`): The query tensor.
191
+ k (`torch.Tensor`): The key tensor.
192
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
193
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
194
+ position_ids (`torch.Tensor`, *optional*):
195
+ Deprecated and unused.
196
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
197
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
198
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
199
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
200
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
201
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
202
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
203
+ Returns:
204
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
205
+ """
206
+ cos = cos.unsqueeze(unsqueeze_dim)
207
+ sin = sin.unsqueeze(unsqueeze_dim)
208
+ q_embed = (q * cos) + (rotate_half(q) * sin)
209
+ k_embed = (k * cos) + (rotate_half(k) * sin)
210
+ return q_embed, k_embed
211
+
212
+
213
+ class AquilaMLP(nn.Module):
214
+ def __init__(self, config):
215
+ super().__init__()
216
+ self.config = config
217
+ self.hidden_size = config.hidden_size
218
+ self.intermediate_size = config.intermediate_size
219
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
220
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
221
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
222
+ self.act_fn = ACT2FN[config.hidden_act]
223
+
224
+ def forward(self, x):
225
+ if self.config.pretraining_tp > 1:
226
+ slice = self.intermediate_size // self.config.pretraining_tp
227
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
228
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
229
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
230
+
231
+ gate_proj = torch.cat(
232
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
233
+ )
234
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
235
+
236
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
237
+ down_proj = [
238
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
239
+ ]
240
+ down_proj = sum(down_proj)
241
+ else:
242
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
243
+
244
+ return down_proj
245
+
246
+
247
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
248
+ """
249
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
250
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
251
+ """
252
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
253
+ if n_rep == 1:
254
+ return hidden_states
255
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
256
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
257
+
258
+
259
+ class AquilaAttention(nn.Module):
260
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
261
+
262
+ def __init__(self, config: AquilaConfig, layer_idx: Optional[int] = None):
263
+ super().__init__()
264
+ self.config = config
265
+ self.layer_idx = layer_idx
266
+ if layer_idx is None:
267
+ logger.warning_once(
268
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
269
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
270
+ "when creating this class."
271
+ )
272
+
273
+ self.attention_dropout = config.attention_dropout
274
+ self.hidden_size = config.hidden_size
275
+ self.num_heads = config.num_attention_heads
276
+ self.head_dim = self.hidden_size // self.num_heads
277
+ self.num_key_value_heads = config.num_key_value_heads
278
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
279
+ self.max_position_embeddings = config.max_position_embeddings
280
+ self.rope_theta = config.rope_theta
281
+ self.is_causal = True
282
+
283
+ if (self.head_dim * self.num_heads) != self.hidden_size:
284
+ raise ValueError(
285
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
286
+ f" and `num_heads`: {self.num_heads})."
287
+ )
288
+
289
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
290
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
291
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
292
+ self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
293
+ self._init_rope()
294
+
295
+ def _init_rope(self):
296
+ if self.config.rope_scaling is None:
297
+ self.rotary_emb = AquilaRotaryEmbedding(
298
+ self.head_dim,
299
+ max_position_embeddings=self.max_position_embeddings,
300
+ base=self.rope_theta,
301
+ )
302
+ else:
303
+ scaling_type = self.config.rope_scaling["type"]
304
+ scaling_factor = self.config.rope_scaling["factor"]
305
+ if scaling_type == "linear":
306
+ self.rotary_emb = AquilaLinearScalingRotaryEmbedding(
307
+ self.head_dim,
308
+ max_position_embeddings=self.max_position_embeddings,
309
+ scaling_factor=scaling_factor,
310
+ base=self.rope_theta,
311
+ )
312
+ elif scaling_type == "dynamic":
313
+ self.rotary_emb = AquilaDynamicNTKScalingRotaryEmbedding(
314
+ self.head_dim,
315
+ max_position_embeddings=self.max_position_embeddings,
316
+ scaling_factor=scaling_factor,
317
+ base=self.rope_theta,
318
+ )
319
+ else:
320
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
321
+
322
+ def forward(
323
+ self,
324
+ hidden_states: torch.Tensor,
325
+ attention_mask: Optional[torch.Tensor] = None,
326
+ position_ids: Optional[torch.LongTensor] = None,
327
+ past_key_value: Optional[Cache] = None,
328
+ output_attentions: bool = False,
329
+ use_cache: bool = False,
330
+ cache_position: Optional[torch.LongTensor] = None,
331
+ **kwargs,
332
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
333
+ bsz, q_len, _ = hidden_states.size()
334
+
335
+ if self.config.pretraining_tp > 1:
336
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
337
+ query_slices = self.q_proj.weight.split(
338
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
339
+ )
340
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
341
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
342
+
343
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
344
+ query_states = torch.cat(query_states, dim=-1)
345
+
346
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
347
+ key_states = torch.cat(key_states, dim=-1)
348
+
349
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
350
+ value_states = torch.cat(value_states, dim=-1)
351
+
352
+ else:
353
+ query_states = self.q_proj(hidden_states)
354
+ key_states = self.k_proj(hidden_states)
355
+ value_states = self.v_proj(hidden_states)
356
+
357
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
358
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
359
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
360
+
361
+ past_key_value = getattr(self, "past_key_value", past_key_value)
362
+ cos, sin = self.rotary_emb(value_states, position_ids)
363
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
364
+
365
+ if past_key_value is not None:
366
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
367
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
368
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
369
+
370
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
371
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
372
+
373
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
374
+
375
+ if attention_mask is not None: # no matter the length, we just slice it
376
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
377
+ attn_weights = attn_weights + causal_mask
378
+
379
+ # upcast attention to fp32
380
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
381
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
382
+ attn_output = torch.matmul(attn_weights, value_states)
383
+
384
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
385
+ raise ValueError(
386
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
387
+ f" {attn_output.size()}"
388
+ )
389
+
390
+ attn_output = attn_output.transpose(1, 2).contiguous()
391
+
392
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
393
+
394
+ if self.config.pretraining_tp > 1:
395
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
396
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
397
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
398
+ else:
399
+ attn_output = self.o_proj(attn_output)
400
+
401
+ if not output_attentions:
402
+ attn_weights = None
403
+
404
+ return attn_output, attn_weights, past_key_value
405
+
406
+
407
+ class AquilaFlashAttention2(AquilaAttention):
408
+ """
409
+ Aquila flash attention module. This module inherits from `AquilaAttention` as the weights of the module stays
410
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
411
+ flash attention and deal with padding tokens in case the input contains any of them.
412
+ """
413
+
414
+ def __init__(self, *args, **kwargs):
415
+ super().__init__(*args, **kwargs)
416
+
417
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
418
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
419
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
420
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
421
+
422
+ def forward(
423
+ self,
424
+ hidden_states: torch.Tensor,
425
+ attention_mask: Optional[torch.LongTensor] = None,
426
+ position_ids: Optional[torch.LongTensor] = None,
427
+ past_key_value: Optional[Cache] = None,
428
+ output_attentions: bool = False,
429
+ use_cache: bool = False,
430
+ cache_position: Optional[torch.LongTensor] = None,
431
+ **kwargs,
432
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
433
+ output_attentions = False
434
+
435
+ bsz, q_len, _ = hidden_states.size()
436
+
437
+ query_states = self.q_proj(hidden_states)
438
+ key_states = self.k_proj(hidden_states)
439
+ value_states = self.v_proj(hidden_states)
440
+
441
+ # Flash attention requires the input to have the shape
442
+ # batch_size x seq_length x head_dim x hidden_dim
443
+ # therefore we just need to keep the original shape
444
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
445
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
446
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
447
+
448
+ cos, sin = self.rotary_emb(value_states, position_ids)
449
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
450
+
451
+ past_key_value = getattr(self, "past_key_value", past_key_value)
452
+
453
+ if past_key_value is not None:
454
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
455
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
456
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
457
+
458
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
459
+ # to be able to avoid many of these transpose/reshape/view.
460
+ query_states = query_states.transpose(1, 2)
461
+ key_states = key_states.transpose(1, 2)
462
+ value_states = value_states.transpose(1, 2)
463
+
464
+ dropout_rate = self.attention_dropout if self.training else 0.0
465
+
466
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
467
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
468
+ # cast them back in the correct dtype just to be sure everything works as expected.
469
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
470
+ # in fp32. (AquilaRMSNorm handles it correctly)
471
+
472
+ input_dtype = query_states.dtype
473
+ if input_dtype == torch.float32:
474
+ if torch.is_autocast_enabled():
475
+ target_dtype = torch.get_autocast_gpu_dtype()
476
+ # Handle the case where the model is quantized
477
+ elif hasattr(self.config, "_pre_quantization_dtype"):
478
+ target_dtype = self.config._pre_quantization_dtype
479
+ else:
480
+ target_dtype = self.q_proj.weight.dtype
481
+
482
+ logger.warning_once(
483
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
484
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
485
+ f" {target_dtype}."
486
+ )
487
+
488
+ query_states = query_states.to(target_dtype)
489
+ key_states = key_states.to(target_dtype)
490
+ value_states = value_states.to(target_dtype)
491
+
492
+ attn_output = self._flash_attention_forward(
493
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
494
+ )
495
+
496
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
497
+ attn_output = self.o_proj(attn_output)
498
+
499
+ if not output_attentions:
500
+ attn_weights = None
501
+
502
+ return attn_output, attn_weights, past_key_value
503
+
504
+ def _flash_attention_forward(
505
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
506
+ ):
507
+ """
508
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
509
+ first unpad the input, then computes the attention scores and pad the final attention scores.
510
+
511
+ Args:
512
+ query_states (`torch.Tensor`):
513
+ Input query states to be passed to Flash Attention API
514
+ key_states (`torch.Tensor`):
515
+ Input key states to be passed to Flash Attention API
516
+ value_states (`torch.Tensor`):
517
+ Input value states to be passed to Flash Attention API
518
+ attention_mask (`torch.Tensor`):
519
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
520
+ position of padding tokens and 1 for the position of non-padding tokens.
521
+ dropout (`float`):
522
+ Attention dropout
523
+ softmax_scale (`float`, *optional*):
524
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
525
+ """
526
+ if not self._flash_attn_uses_top_left_mask:
527
+ causal = self.is_causal
528
+ else:
529
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in AquilaFlashAttention2 __init__.
530
+ causal = self.is_causal and query_length != 1
531
+
532
+ # Contains at least one padding token in the sequence
533
+ if attention_mask is not None:
534
+ batch_size = query_states.shape[0]
535
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
536
+ query_states, key_states, value_states, attention_mask, query_length
537
+ )
538
+
539
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
540
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
541
+
542
+ attn_output_unpad = flash_attn_varlen_func(
543
+ query_states,
544
+ key_states,
545
+ value_states,
546
+ cu_seqlens_q=cu_seqlens_q,
547
+ cu_seqlens_k=cu_seqlens_k,
548
+ max_seqlen_q=max_seqlen_in_batch_q,
549
+ max_seqlen_k=max_seqlen_in_batch_k,
550
+ dropout_p=dropout,
551
+ softmax_scale=softmax_scale,
552
+ causal=causal,
553
+ )
554
+
555
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
556
+ else:
557
+ attn_output = flash_attn_func(
558
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
559
+ )
560
+
561
+ return attn_output
562
+
563
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
564
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
565
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
566
+
567
+ key_layer = index_first_axis(
568
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
569
+ )
570
+ value_layer = index_first_axis(
571
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
572
+ )
573
+ if query_length == kv_seq_len:
574
+ query_layer = index_first_axis(
575
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
576
+ )
577
+ cu_seqlens_q = cu_seqlens_k
578
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
579
+ indices_q = indices_k
580
+ elif query_length == 1:
581
+ max_seqlen_in_batch_q = 1
582
+ cu_seqlens_q = torch.arange(
583
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
584
+ ) # There is a memcpy here, that is very bad.
585
+ indices_q = cu_seqlens_q[:-1]
586
+ query_layer = query_layer.squeeze(1)
587
+ else:
588
+ # The -q_len: slice assumes left padding.
589
+ attention_mask = attention_mask[:, -query_length:]
590
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
591
+
592
+ return (
593
+ query_layer,
594
+ key_layer,
595
+ value_layer,
596
+ indices_q,
597
+ (cu_seqlens_q, cu_seqlens_k),
598
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
599
+ )
600
+
601
+
602
+ class AquilaSdpaAttention(AquilaAttention):
603
+ """
604
+ Aquila attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
605
+ `AquilaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
606
+ SDPA API.
607
+ """
608
+
609
+ # Adapted from AquilaAttention.forward
610
+ def forward(
611
+ self,
612
+ hidden_states: torch.Tensor,
613
+ attention_mask: Optional[torch.Tensor] = None,
614
+ position_ids: Optional[torch.LongTensor] = None,
615
+ past_key_value: Optional[Cache] = None,
616
+ output_attentions: bool = False,
617
+ use_cache: bool = False,
618
+ cache_position: Optional[torch.LongTensor] = None,
619
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
620
+ if output_attentions:
621
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
622
+ logger.warning_once(
623
+ "AquilaModel is using AquilaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
624
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
625
+ )
626
+ return super().forward(
627
+ hidden_states=hidden_states,
628
+ attention_mask=attention_mask,
629
+ position_ids=position_ids,
630
+ past_key_value=past_key_value,
631
+ output_attentions=output_attentions,
632
+ use_cache=use_cache,
633
+ cache_position=cache_position,
634
+ )
635
+
636
+ bsz, q_len, _ = hidden_states.size()
637
+
638
+ query_states = self.q_proj(hidden_states)
639
+ key_states = self.k_proj(hidden_states)
640
+ value_states = self.v_proj(hidden_states)
641
+
642
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
643
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
644
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
645
+
646
+ cos, sin = self.rotary_emb(value_states, position_ids)
647
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
648
+
649
+ # In case static cache is used, it is an instance attribute.
650
+ past_key_value = getattr(self, "past_key_value", past_key_value)
651
+
652
+ if past_key_value is not None:
653
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
654
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
655
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
656
+
657
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
658
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
659
+
660
+ causal_mask = attention_mask
661
+ # if attention_mask is not None and cache_position is not None:
662
+ if attention_mask is not None:
663
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
664
+
665
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
666
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
667
+ if query_states.device.type == "cuda" and causal_mask is not None:
668
+ query_states = query_states.contiguous()
669
+ key_states = key_states.contiguous()
670
+ value_states = value_states.contiguous()
671
+
672
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
673
+ query_states,
674
+ key_states,
675
+ value_states,
676
+ attn_mask=causal_mask,
677
+ dropout_p=self.attention_dropout if self.training else 0.0,
678
+ )
679
+
680
+ attn_output = attn_output.transpose(1, 2).contiguous()
681
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
682
+
683
+ attn_output = self.o_proj(attn_output)
684
+
685
+ return attn_output, None, past_key_value
686
+
687
+
688
+ AQUILA_ATTENTION_CLASSES = {
689
+ "eager": AquilaAttention,
690
+ "flash_attention_2": AquilaFlashAttention2,
691
+ "sdpa": AquilaSdpaAttention,
692
+ }
693
+
694
+
695
+ class AquilaDecoderLayer(nn.Module):
696
+ def __init__(self, config: AquilaConfig, layer_idx: int):
697
+ super().__init__()
698
+ self.hidden_size = config.hidden_size
699
+
700
+ self.self_attn = AQUILA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
701
+
702
+ self.mlp = AquilaMLP(config)
703
+ self.input_layernorm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
704
+ self.post_attention_layernorm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
705
+
706
+ def forward(
707
+ self,
708
+ hidden_states: torch.Tensor,
709
+ attention_mask: Optional[torch.Tensor] = None,
710
+ position_ids: Optional[torch.LongTensor] = None,
711
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
712
+ output_attentions: Optional[bool] = False,
713
+ use_cache: Optional[bool] = False,
714
+ cache_position: Optional[torch.LongTensor] = None,
715
+ **kwargs,
716
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
717
+ """
718
+ Args:
719
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
720
+ attention_mask (`torch.FloatTensor`, *optional*):
721
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
722
+ query_sequence_length, key_sequence_length)` if default attention is used.
723
+ output_attentions (`bool`, *optional*):
724
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
725
+ returned tensors for more detail.
726
+ use_cache (`bool`, *optional*):
727
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
728
+ (see `past_key_values`).
729
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
730
+ """
731
+ if "padding_mask" in kwargs:
732
+ warnings.warn(
733
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
734
+ )
735
+
736
+ residual = hidden_states
737
+
738
+ hidden_states = self.input_layernorm(hidden_states)
739
+
740
+ # Self Attention
741
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
742
+ hidden_states=hidden_states,
743
+ attention_mask=attention_mask,
744
+ position_ids=position_ids,
745
+ past_key_value=past_key_value,
746
+ output_attentions=output_attentions,
747
+ use_cache=use_cache,
748
+ cache_position=cache_position,
749
+ **kwargs,
750
+ )
751
+ hidden_states = residual + hidden_states
752
+
753
+ # Fully Connected
754
+ residual = hidden_states
755
+ hidden_states = self.post_attention_layernorm(hidden_states)
756
+ hidden_states = self.mlp(hidden_states)
757
+ hidden_states = residual + hidden_states
758
+
759
+ outputs = (hidden_states,)
760
+
761
+ if output_attentions:
762
+ outputs += (self_attn_weights,)
763
+
764
+ if use_cache:
765
+ outputs += (present_key_value,)
766
+
767
+ return outputs
768
+
769
+
770
+ AQUILA_START_DOCSTRING = r"""
771
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
772
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
773
+ etc.)
774
+
775
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
776
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
777
+ and behavior.
778
+
779
+ Parameters:
780
+ config ([`AquilaConfig`]):
781
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
782
+ load the weights associated with the model, only the configuration. Check out the
783
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
784
+ """
785
+
786
+
787
+ @add_start_docstrings(
788
+ "The bare Aquila Model outputting raw hidden-states without any specific head on top.",
789
+ AQUILA_START_DOCSTRING,
790
+ )
791
+ class AquilaPreTrainedModel(PreTrainedModel):
792
+ config_class = AquilaConfig
793
+ base_model_prefix = "model"
794
+ supports_gradient_checkpointing = True
795
+ _no_split_modules = ["AquilaDecoderLayer"]
796
+ _skip_keys_device_placement = ["past_key_values"]
797
+ _supports_flash_attn_2 = True
798
+ _supports_sdpa = True
799
+ _supports_cache_class = True
800
+
801
+ def _init_weights(self, module):
802
+ std = self.config.initializer_range
803
+ if isinstance(module, nn.Linear):
804
+ module.weight.data.normal_(mean=0.0, std=std)
805
+ if module.bias is not None:
806
+ module.bias.data.zero_()
807
+ elif isinstance(module, nn.Embedding):
808
+ module.weight.data.normal_(mean=0.0, std=std)
809
+ if module.padding_idx is not None:
810
+ module.weight.data[module.padding_idx].zero_()
811
+
812
+ def _setup_cache(self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None):
813
+ if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache:
814
+ raise ValueError(
815
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
816
+ "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
817
+ )
818
+
819
+ for layer in self.model.layers:
820
+ device = layer.input_layernorm.weight.device
821
+ if hasattr(self.config, "_pre_quantization_dtype"):
822
+ dtype = self.config._pre_quantization_dtype
823
+ else:
824
+ dtype = layer.self_attn.o_proj.weight.dtype
825
+ layer.self_attn.past_key_value = cache_cls(
826
+ self.config, max_batch_size, max_cache_len, device=device, dtype=dtype
827
+ )
828
+
829
+ def _reset_cache(self):
830
+ for layer in self.model.layers:
831
+ layer.self_attn.past_key_value = None
832
+
833
+
834
+ AQUILA_INPUTS_DOCSTRING = r"""
835
+ Args:
836
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
837
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
838
+ it.
839
+
840
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
841
+ [`PreTrainedTokenizer.__call__`] for details.
842
+
843
+ [What are input IDs?](../glossary#input-ids)
844
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
845
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
846
+
847
+ - 1 for tokens that are **not masked**,
848
+ - 0 for tokens that are **masked**.
849
+
850
+ [What are attention masks?](../glossary#attention-mask)
851
+
852
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
853
+ [`PreTrainedTokenizer.__call__`] for details.
854
+
855
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
856
+ `past_key_values`).
857
+
858
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
859
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
860
+ information on the default strategy.
861
+
862
+ - 1 indicates the head is **not masked**,
863
+ - 0 indicates the head is **masked**.
864
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
865
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
866
+ config.n_positions - 1]`.
867
+
868
+ [What are position IDs?](../glossary#position-ids)
869
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
870
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
871
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
872
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
873
+
874
+ Two formats are allowed:
875
+ - a [`~cache_utils.Cache`] instance;
876
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
877
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
878
+ cache format.
879
+
880
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
881
+ legacy cache format will be returned.
882
+
883
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
884
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
885
+ of shape `(batch_size, sequence_length)`.
886
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
887
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
888
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
889
+ model's internal embedding lookup matrix.
890
+ use_cache (`bool`, *optional*):
891
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
892
+ `past_key_values`).
893
+ output_attentions (`bool`, *optional*):
894
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
895
+ tensors for more detail.
896
+ output_hidden_states (`bool`, *optional*):
897
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
898
+ more detail.
899
+ return_dict (`bool`, *optional*):
900
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
901
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
902
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
903
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
904
+ the complete sequence length.
905
+ """
906
+
907
+
908
+ @add_start_docstrings(
909
+ "The bare Aquila Model outputting raw hidden-states without any specific head on top.",
910
+ AQUILA_START_DOCSTRING,
911
+ )
912
+ class AquilaModel(AquilaPreTrainedModel):
913
+ """
914
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`AquilaDecoderLayer`]
915
+
916
+ Args:
917
+ config: AquilaConfig
918
+ """
919
+
920
+ def __init__(self, config: AquilaConfig):
921
+ super().__init__(config)
922
+ self.padding_idx = config.pad_token_id
923
+ self.vocab_size = config.vocab_size
924
+
925
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
926
+ self.layers = nn.ModuleList(
927
+ [AquilaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
928
+ )
929
+ self.norm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
930
+ self.gradient_checkpointing = False
931
+
932
+ # Initialize weights and apply final processing
933
+ self.post_init()
934
+
935
+ def get_input_embeddings(self):
936
+ return self.embed_tokens
937
+
938
+ def set_input_embeddings(self, value):
939
+ self.embed_tokens = value
940
+
941
+ @add_start_docstrings_to_model_forward(AQUILA_INPUTS_DOCSTRING)
942
+ def forward(
943
+ self,
944
+ input_ids: torch.LongTensor = None,
945
+ attention_mask: Optional[torch.Tensor] = None,
946
+ position_ids: Optional[torch.LongTensor] = None,
947
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
948
+ inputs_embeds: Optional[torch.FloatTensor] = None,
949
+ use_cache: Optional[bool] = None,
950
+ output_attentions: Optional[bool] = None,
951
+ output_hidden_states: Optional[bool] = None,
952
+ return_dict: Optional[bool] = None,
953
+ cache_position: Optional[torch.LongTensor] = None,
954
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
955
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
956
+ output_hidden_states = (
957
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
958
+ )
959
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
960
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
961
+
962
+ if (input_ids is None) ^ (inputs_embeds is not None):
963
+ raise ValueError(
964
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
965
+ )
966
+
967
+ if self.gradient_checkpointing and self.training and use_cache:
968
+ logger.warning_once(
969
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
970
+ )
971
+ use_cache = False
972
+
973
+ if inputs_embeds is None:
974
+ inputs_embeds = self.embed_tokens(input_ids)
975
+
976
+ past_seen_tokens = 0
977
+ if use_cache: # kept for BC (cache positions)
978
+ if not isinstance(past_key_values, StaticCache):
979
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
980
+ past_seen_tokens = past_key_values.get_seq_length()
981
+
982
+ if cache_position is None:
983
+ if isinstance(past_key_values, StaticCache):
984
+ raise ValueError("cache_position is a required argument when using StaticCache.")
985
+ cache_position = torch.arange(
986
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
987
+ )
988
+
989
+ if position_ids is None:
990
+ position_ids = cache_position.unsqueeze(0)
991
+
992
+ causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
993
+
994
+ # embed positions
995
+ hidden_states = inputs_embeds
996
+
997
+ # decoder layers
998
+ all_hidden_states = () if output_hidden_states else None
999
+ all_self_attns = () if output_attentions else None
1000
+ next_decoder_cache = None
1001
+
1002
+ for decoder_layer in self.layers:
1003
+ if output_hidden_states:
1004
+ all_hidden_states += (hidden_states,)
1005
+
1006
+ if self.gradient_checkpointing and self.training:
1007
+ layer_outputs = self._gradient_checkpointing_func(
1008
+ decoder_layer.__call__,
1009
+ hidden_states,
1010
+ causal_mask,
1011
+ position_ids,
1012
+ past_key_values,
1013
+ output_attentions,
1014
+ use_cache,
1015
+ cache_position,
1016
+ )
1017
+ else:
1018
+ layer_outputs = decoder_layer(
1019
+ hidden_states,
1020
+ attention_mask=causal_mask,
1021
+ position_ids=position_ids,
1022
+ past_key_value=past_key_values,
1023
+ output_attentions=output_attentions,
1024
+ use_cache=use_cache,
1025
+ cache_position=cache_position,
1026
+ )
1027
+
1028
+ hidden_states = layer_outputs[0]
1029
+
1030
+ if use_cache:
1031
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1032
+
1033
+ if output_attentions:
1034
+ all_self_attns += (layer_outputs[1],)
1035
+
1036
+ hidden_states = self.norm(hidden_states)
1037
+
1038
+ # add hidden states from the last decoder layer
1039
+ if output_hidden_states:
1040
+ all_hidden_states += (hidden_states,)
1041
+
1042
+ next_cache = None
1043
+ if use_cache:
1044
+ next_cache = (
1045
+ next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
1046
+ )
1047
+ if not return_dict:
1048
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1049
+ return BaseModelOutputWithPast(
1050
+ last_hidden_state=hidden_states,
1051
+ past_key_values=next_cache,
1052
+ hidden_states=all_hidden_states,
1053
+ attentions=all_self_attns,
1054
+ )
1055
+
1056
+ # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
1057
+ # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
1058
+ # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
1059
+ # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
1060
+ def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
1061
+ if self.config._attn_implementation == "flash_attention_2":
1062
+ if attention_mask is not None and 0.0 in attention_mask:
1063
+ return attention_mask
1064
+ return None
1065
+
1066
+ dtype, device = input_tensor.dtype, input_tensor.device
1067
+ min_dtype = torch.finfo(dtype).min
1068
+ sequence_length = input_tensor.shape[1]
1069
+ if hasattr(getattr(self.layers[0], "self_attn", {}), "past_key_value"): # static cache
1070
+ target_length = self.config.max_position_embeddings
1071
+ else: # dynamic cache
1072
+ target_length = (
1073
+ attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else cache_position[-1] + 1
1074
+ )
1075
+
1076
+ causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
1077
+ if sequence_length != 1:
1078
+ causal_mask = torch.triu(causal_mask, diagonal=1)
1079
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
1080
+ causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
1081
+ if attention_mask is not None:
1082
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
1083
+ if attention_mask.dim() == 2:
1084
+ mask_length = attention_mask.shape[-1]
1085
+ padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
1086
+ causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
1087
+ elif attention_mask.dim() == 4:
1088
+ # backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
1089
+ # cache. In that case, the 4D attention mask attends to the newest tokens only.
1090
+ if attention_mask.shape[-2] < cache_position[0] + sequence_length:
1091
+ offset = cache_position[0]
1092
+ else:
1093
+ offset = 0
1094
+ mask_shape = attention_mask.shape
1095
+ mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
1096
+ causal_mask[
1097
+ : mask_shape[0], : mask_shape[1], offset : mask_shape[2] + offset, : mask_shape[3]
1098
+ ] = mask_slice
1099
+
1100
+ if (
1101
+ self.config._attn_implementation == "sdpa"
1102
+ and attention_mask is not None
1103
+ and attention_mask.device.type == "cuda"
1104
+ ):
1105
+ # TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400).
1106
+ is_tracing = (
1107
+ torch.jit.is_tracing()
1108
+ or isinstance(input_tensor, torch.fx.Proxy)
1109
+ or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
1110
+ )
1111
+ if not is_tracing and torch.any(attention_mask != 1):
1112
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1113
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1114
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1115
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
1116
+
1117
+ return causal_mask
1118
+
1119
+
1120
+ class AquilaForCausalLM(AquilaPreTrainedModel):
1121
+ _tied_weights_keys = ["lm_head.weight"]
1122
+
1123
+ def __init__(self, config):
1124
+ super().__init__(config)
1125
+ self.model = AquilaModel(config)
1126
+ self.vocab_size = config.vocab_size
1127
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1128
+
1129
+ # Initialize weights and apply final processing
1130
+ self.post_init()
1131
+
1132
+ def get_input_embeddings(self):
1133
+ return self.model.embed_tokens
1134
+
1135
+ def set_input_embeddings(self, value):
1136
+ self.model.embed_tokens = value
1137
+
1138
+ def get_output_embeddings(self):
1139
+ return self.lm_head
1140
+
1141
+ def set_output_embeddings(self, new_embeddings):
1142
+ self.lm_head = new_embeddings
1143
+
1144
+ def set_decoder(self, decoder):
1145
+ self.model = decoder
1146
+
1147
+ def get_decoder(self):
1148
+ return self.model
1149
+
1150
+ @add_start_docstrings_to_model_forward(AQUILA_INPUTS_DOCSTRING)
1151
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1152
+ def forward(
1153
+ self,
1154
+ input_ids: torch.LongTensor = None,
1155
+ attention_mask: Optional[torch.Tensor] = None,
1156
+ position_ids: Optional[torch.LongTensor] = None,
1157
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1158
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1159
+ labels: Optional[torch.LongTensor] = None,
1160
+ use_cache: Optional[bool] = None,
1161
+ output_attentions: Optional[bool] = None,
1162
+ output_hidden_states: Optional[bool] = None,
1163
+ return_dict: Optional[bool] = None,
1164
+ cache_position: Optional[torch.LongTensor] = None,
1165
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1166
+ r"""
1167
+ Args:
1168
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1169
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1170
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1171
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1172
+
1173
+ Returns:
1174
+
1175
+ Example:
1176
+
1177
+ ```python
1178
+ >>> from transformers import AutoTokenizer, AquilaForCausalLM
1179
+
1180
+ >>> model = AquilaForCausalLM.from_pretrained("BAAI/Aquila2-7B")
1181
+ >>> tokenizer = AutoTokenizer.from_pretrained("BAAI/Aquila2-7B")
1182
+
1183
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1184
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1185
+
1186
+ >>> # Generate
1187
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1188
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1189
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1190
+ ```"""
1191
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1192
+ output_hidden_states = (
1193
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1194
+ )
1195
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1196
+
1197
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1198
+ outputs = self.model(
1199
+ input_ids=input_ids,
1200
+ attention_mask=attention_mask,
1201
+ position_ids=position_ids,
1202
+ past_key_values=past_key_values,
1203
+ inputs_embeds=inputs_embeds,
1204
+ use_cache=use_cache,
1205
+ output_attentions=output_attentions,
1206
+ output_hidden_states=output_hidden_states,
1207
+ return_dict=return_dict,
1208
+ cache_position=cache_position,
1209
+ )
1210
+
1211
+ hidden_states = outputs[0]
1212
+ if self.config.pretraining_tp > 1:
1213
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1214
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1215
+ logits = torch.cat(logits, dim=-1)
1216
+ else:
1217
+ logits = self.lm_head(hidden_states)
1218
+ logits = logits.float()
1219
+
1220
+ loss = None
1221
+ if labels is not None:
1222
+ # Shift so that tokens < n predict n
1223
+ shift_logits = logits[..., :-1, :].contiguous()
1224
+ shift_labels = labels[..., 1:].contiguous()
1225
+ # Flatten the tokens
1226
+ loss_fct = CrossEntropyLoss()
1227
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1228
+ shift_labels = shift_labels.view(-1)
1229
+ # Enable model parallelism
1230
+ shift_labels = shift_labels.to(shift_logits.device)
1231
+ loss = loss_fct(shift_logits, shift_labels)
1232
+
1233
+ if not return_dict:
1234
+ output = (logits,) + outputs[1:]
1235
+ return (loss,) + output if loss is not None else output
1236
+
1237
+ return CausalLMOutputWithPast(
1238
+ loss=loss,
1239
+ logits=logits,
1240
+ past_key_values=outputs.past_key_values,
1241
+ hidden_states=outputs.hidden_states,
1242
+ attentions=outputs.attentions,
1243
+ )
1244
+
1245
+ def prepare_inputs_for_generation(
1246
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
1247
+ ):
1248
+ # With static cache, the `past_key_values` is None
1249
+ # TODO joao: standardize interface for the different Cache classes and remove of this if
1250
+ has_static_cache = False
1251
+ if past_key_values is None:
1252
+ past_key_values = getattr(getattr(self.model.layers[0], "self_attn", {}), "past_key_value", None)
1253
+ has_static_cache = past_key_values is not None
1254
+
1255
+ past_length = 0
1256
+ if past_key_values is not None:
1257
+ if isinstance(past_key_values, Cache):
1258
+ past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
1259
+ max_cache_length = (
1260
+ torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
1261
+ if past_key_values.get_max_length() is not None
1262
+ else None
1263
+ )
1264
+ cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
1265
+ # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
1266
+ else:
1267
+ cache_length = past_length = past_key_values[0][0].shape[2]
1268
+ max_cache_length = None
1269
+
1270
+ # Keep only the unprocessed tokens:
1271
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1272
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1273
+ # input)
1274
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1275
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1276
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1277
+ # input_ids based on the past_length.
1278
+ elif past_length < input_ids.shape[1]:
1279
+ input_ids = input_ids[:, past_length:]
1280
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1281
+
1282
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1283
+ if (
1284
+ max_cache_length is not None
1285
+ and attention_mask is not None
1286
+ and cache_length + input_ids.shape[1] > max_cache_length
1287
+ ):
1288
+ attention_mask = attention_mask[:, -max_cache_length:]
1289
+
1290
+ position_ids = kwargs.get("position_ids", None)
1291
+ if attention_mask is not None and position_ids is None:
1292
+ # create position_ids on the fly for batch generation
1293
+ position_ids = attention_mask.long().cumsum(-1) - 1
1294
+ position_ids.masked_fill_(attention_mask == 0, 1)
1295
+ if past_key_values:
1296
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1297
+
1298
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1299
+ if inputs_embeds is not None and past_key_values is None:
1300
+ model_inputs = {"inputs_embeds": inputs_embeds}
1301
+ else:
1302
+ # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
1303
+ # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
1304
+ # TODO: use `next_tokens` directly instead.
1305
+ model_inputs = {"input_ids": input_ids.contiguous()}
1306
+
1307
+ input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
1308
+ if cache_position is None:
1309
+ cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
1310
+ else:
1311
+ cache_position = cache_position[-input_length:]
1312
+
1313
+ if has_static_cache:
1314
+ past_key_values = None
1315
+
1316
+ model_inputs.update(
1317
+ {
1318
+ "position_ids": position_ids,
1319
+ "cache_position": cache_position,
1320
+ "past_key_values": past_key_values,
1321
+ "use_cache": kwargs.get("use_cache"),
1322
+ "attention_mask": attention_mask,
1323
+ }
1324
+ )
1325
+ return model_inputs
1326
+
1327
+ @staticmethod
1328
+ def _reorder_cache(past_key_values, beam_idx):
1329
+ reordered_past = ()
1330
+ for layer_past in past_key_values:
1331
+ reordered_past += (
1332
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1333
+ )
1334
+ return reordered_past
1335
+
1336
+
1337
+ @add_start_docstrings(
1338
+ """
1339
+ The Aquila Model transformer with a sequence classification head on top (linear layer).
1340
+
1341
+ [`AquilaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1342
+ (e.g. GPT-2) do.
1343
+
1344
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1345
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1346
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1347
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1348
+ each row of the batch).
1349
+ """,
1350
+ AQUILA_START_DOCSTRING,
1351
+ )
1352
+ class AquilaForSequenceClassification(AquilaPreTrainedModel):
1353
+ def __init__(self, config):
1354
+ super().__init__(config)
1355
+ self.num_labels = config.num_labels
1356
+ self.model = AquilaModel(config)
1357
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1358
+
1359
+ # Initialize weights and apply final processing
1360
+ self.post_init()
1361
+
1362
+ def get_input_embeddings(self):
1363
+ return self.model.embed_tokens
1364
+
1365
+ def set_input_embeddings(self, value):
1366
+ self.model.embed_tokens = value
1367
+
1368
+ @add_start_docstrings_to_model_forward(AQUILA_INPUTS_DOCSTRING)
1369
+ def forward(
1370
+ self,
1371
+ input_ids: torch.LongTensor = None,
1372
+ attention_mask: Optional[torch.Tensor] = None,
1373
+ position_ids: Optional[torch.LongTensor] = None,
1374
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1375
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1376
+ labels: Optional[torch.LongTensor] = None,
1377
+ use_cache: Optional[bool] = None,
1378
+ output_attentions: Optional[bool] = None,
1379
+ output_hidden_states: Optional[bool] = None,
1380
+ return_dict: Optional[bool] = None,
1381
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1382
+ r"""
1383
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1384
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1385
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1386
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1387
+ """
1388
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1389
+
1390
+ transformer_outputs = self.model(
1391
+ input_ids,
1392
+ attention_mask=attention_mask,
1393
+ position_ids=position_ids,
1394
+ past_key_values=past_key_values,
1395
+ inputs_embeds=inputs_embeds,
1396
+ use_cache=use_cache,
1397
+ output_attentions=output_attentions,
1398
+ output_hidden_states=output_hidden_states,
1399
+ return_dict=return_dict,
1400
+ )
1401
+ hidden_states = transformer_outputs[0]
1402
+ logits = self.score(hidden_states)
1403
+
1404
+ if input_ids is not None:
1405
+ batch_size = input_ids.shape[0]
1406
+ else:
1407
+ batch_size = inputs_embeds.shape[0]
1408
+
1409
+ if self.config.pad_token_id is None and batch_size != 1:
1410
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1411
+ if self.config.pad_token_id is None:
1412
+ sequence_lengths = -1
1413
+ else:
1414
+ if input_ids is not None:
1415
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1416
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1417
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1418
+ sequence_lengths = sequence_lengths.to(logits.device)
1419
+ else:
1420
+ sequence_lengths = -1
1421
+
1422
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1423
+
1424
+ loss = None
1425
+ if labels is not None:
1426
+ labels = labels.to(logits.device)
1427
+ if self.config.problem_type is None:
1428
+ if self.num_labels == 1:
1429
+ self.config.problem_type = "regression"
1430
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1431
+ self.config.problem_type = "single_label_classification"
1432
+ else:
1433
+ self.config.problem_type = "multi_label_classification"
1434
+
1435
+ if self.config.problem_type == "regression":
1436
+ loss_fct = MSELoss()
1437
+ if self.num_labels == 1:
1438
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1439
+ else:
1440
+ loss = loss_fct(pooled_logits, labels)
1441
+ elif self.config.problem_type == "single_label_classification":
1442
+ loss_fct = CrossEntropyLoss()
1443
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1444
+ elif self.config.problem_type == "multi_label_classification":
1445
+ loss_fct = BCEWithLogitsLoss()
1446
+ loss = loss_fct(pooled_logits, labels)
1447
+ if not return_dict:
1448
+ output = (pooled_logits,) + transformer_outputs[1:]
1449
+ return ((loss,) + output) if loss is not None else output
1450
+
1451
+ return SequenceClassifierOutputWithPast(
1452
+ loss=loss,
1453
+ logits=pooled_logits,
1454
+ past_key_values=transformer_outputs.past_key_values,
1455
+ hidden_states=transformer_outputs.hidden_states,
1456
+ attentions=transformer_outputs.attentions,
1457
+ )
1458
+
1459
+
1460
+ @add_start_docstrings(
1461
+ """
1462
+ The Aquila Model transformer with a span classification head on top for extractive question-answering tasks like
1463
+ SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1464
+ """,
1465
+ AQUILA_START_DOCSTRING,
1466
+ )
1467
+ class AquilaForQuestionAnswering(AquilaPreTrainedModel):
1468
+ base_model_prefix = "transformer"
1469
+
1470
+ # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->Aquila
1471
+ def __init__(self, config):
1472
+ super().__init__(config)
1473
+ self.transformer = AquilaModel(config)
1474
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1475
+
1476
+ # Initialize weights and apply final processing
1477
+ self.post_init()
1478
+
1479
+ def get_input_embeddings(self):
1480
+ return self.transformer.embed_tokens
1481
+
1482
+ def set_input_embeddings(self, value):
1483
+ self.transformer.embed_tokens = value
1484
+
1485
+ @add_start_docstrings_to_model_forward(AQUILA_INPUTS_DOCSTRING)
1486
+ def forward(
1487
+ self,
1488
+ input_ids: Optional[torch.LongTensor] = None,
1489
+ attention_mask: Optional[torch.FloatTensor] = None,
1490
+ position_ids: Optional[torch.LongTensor] = None,
1491
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1492
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1493
+ start_positions: Optional[torch.LongTensor] = None,
1494
+ end_positions: Optional[torch.LongTensor] = None,
1495
+ output_attentions: Optional[bool] = None,
1496
+ output_hidden_states: Optional[bool] = None,
1497
+ return_dict: Optional[bool] = None,
1498
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1499
+ r"""
1500
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1501
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1502
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1503
+ are not taken into account for computing the loss.
1504
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1505
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1506
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1507
+ are not taken into account for computing the loss.
1508
+ """
1509
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1510
+
1511
+ outputs = self.transformer(
1512
+ input_ids,
1513
+ attention_mask=attention_mask,
1514
+ position_ids=position_ids,
1515
+ past_key_values=past_key_values,
1516
+ inputs_embeds=inputs_embeds,
1517
+ output_attentions=output_attentions,
1518
+ output_hidden_states=output_hidden_states,
1519
+ return_dict=return_dict,
1520
+ )
1521
+
1522
+ sequence_output = outputs[0]
1523
+
1524
+ logits = self.qa_outputs(sequence_output)
1525
+ start_logits, end_logits = logits.split(1, dim=-1)
1526
+ start_logits = start_logits.squeeze(-1).contiguous()
1527
+ end_logits = end_logits.squeeze(-1).contiguous()
1528
+
1529
+ total_loss = None
1530
+ if start_positions is not None and end_positions is not None:
1531
+ # If we are on multi-GPU, split add a dimension
1532
+ if len(start_positions.size()) > 1:
1533
+ start_positions = start_positions.squeeze(-1).to(start_logits.device)
1534
+ if len(end_positions.size()) > 1:
1535
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
1536
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1537
+ ignored_index = start_logits.size(1)
1538
+ start_positions = start_positions.clamp(0, ignored_index)
1539
+ end_positions = end_positions.clamp(0, ignored_index)
1540
+
1541
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1542
+ start_loss = loss_fct(start_logits, start_positions)
1543
+ end_loss = loss_fct(end_logits, end_positions)
1544
+ total_loss = (start_loss + end_loss) / 2
1545
+
1546
+ if not return_dict:
1547
+ output = (start_logits, end_logits) + outputs[2:]
1548
+ return ((total_loss,) + output) if total_loss is not None else output
1549
+
1550
+ return QuestionAnsweringModelOutput(
1551
+ loss=total_loss,
1552
+ start_logits=start_logits,
1553
+ end_logits=end_logits,
1554
+ hidden_states=outputs.hidden_states,
1555
+ attentions=outputs.attentions,
1556
+ )
smash_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "api_key": null,
3
+ "verify_url": "http://johnrachwan.pythonanywhere.com",
4
+ "smash_config": {
5
+ "pruners": "None",
6
+ "pruning_ratio": 0.0,
7
+ "factorizers": "None",
8
+ "quantizers": "['llm-int8']",
9
+ "weight_quantization_bits": 8,
10
+ "output_deviation": 0.005,
11
+ "compilers": "None",
12
+ "static_batch": true,
13
+ "static_shape": true,
14
+ "controlnet": "None",
15
+ "unet_dim": 4,
16
+ "device": "cuda",
17
+ "cache_dir": "/ceph/hdd/staff/charpent/.cache/modelsko7f3y_5",
18
+ "batch_size": 1,
19
+ "model_name": "BAAI/Aquila2-7B",
20
+ "task": "text_text_generation",
21
+ "max_batch_size": 1,
22
+ "qtype_weight": "torch.qint8",
23
+ "qtype_activation": "torch.quint8",
24
+ "qobserver": "<class 'torch.ao.quantization.observer.MinMaxObserver'>",
25
+ "qscheme": "torch.per_tensor_symmetric",
26
+ "qconfig": "x86",
27
+ "group_size": 128,
28
+ "damp_percent": 0.1,
29
+ "save_load_fn": "bitsandbytes"
30
+ }
31
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end_of_text|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|end_of_text|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,2065 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "143717": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "143718": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "143719": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "143720": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "143721": {
36
+ "content": "<|reserved_special_token_2|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "143722": {
44
+ "content": "<|reserved_special_token_3|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "143723": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "143724": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "143725": {
68
+ "content": "<|reserved_special_token_4|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "143726": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "143727": {
84
+ "content": "<|reserved_special_token_5|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "143728": {
92
+ "content": "<|reserved_special_token_6|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "143729": {
100
+ "content": "<|reserved_special_token_7|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "143730": {
108
+ "content": "<|reserved_special_token_8|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "143731": {
116
+ "content": "<|reserved_special_token_9|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "143732": {
124
+ "content": "<|reserved_special_token_10|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "143733": {
132
+ "content": "<|reserved_special_token_11|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "143734": {
140
+ "content": "<|reserved_special_token_12|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "143735": {
148
+ "content": "<|reserved_special_token_13|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "143736": {
156
+ "content": "<|reserved_special_token_14|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "143737": {
164
+ "content": "<|reserved_special_token_15|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "143738": {
172
+ "content": "<|reserved_special_token_16|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "143739": {
180
+ "content": "<|reserved_special_token_17|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "143740": {
188
+ "content": "<|reserved_special_token_18|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "143741": {
196
+ "content": "<|reserved_special_token_19|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "143742": {
204
+ "content": "<|reserved_special_token_20|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "143743": {
212
+ "content": "<|reserved_special_token_21|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "143744": {
220
+ "content": "<|reserved_special_token_22|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "143745": {
228
+ "content": "<|reserved_special_token_23|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "143746": {
236
+ "content": "<|reserved_special_token_24|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "143747": {
244
+ "content": "<|reserved_special_token_25|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "143748": {
252
+ "content": "<|reserved_special_token_26|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "143749": {
260
+ "content": "<|reserved_special_token_27|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "143750": {
268
+ "content": "<|reserved_special_token_28|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "143751": {
276
+ "content": "<|reserved_special_token_29|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "143752": {
284
+ "content": "<|reserved_special_token_30|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "143753": {
292
+ "content": "<|reserved_special_token_31|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "143754": {
300
+ "content": "<|reserved_special_token_32|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "143755": {
308
+ "content": "<|reserved_special_token_33|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "143756": {
316
+ "content": "<|reserved_special_token_34|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "143757": {
324
+ "content": "<|reserved_special_token_35|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "143758": {
332
+ "content": "<|reserved_special_token_36|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "143759": {
340
+ "content": "<|reserved_special_token_37|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "143760": {
348
+ "content": "<|reserved_special_token_38|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "143761": {
356
+ "content": "<|reserved_special_token_39|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "143762": {
364
+ "content": "<|reserved_special_token_40|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "143763": {
372
+ "content": "<|reserved_special_token_41|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "143764": {
380
+ "content": "<|reserved_special_token_42|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "143765": {
388
+ "content": "<|reserved_special_token_43|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "143766": {
396
+ "content": "<|reserved_special_token_44|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "143767": {
404
+ "content": "<|reserved_special_token_45|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "143768": {
412
+ "content": "<|reserved_special_token_46|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "143769": {
420
+ "content": "<|reserved_special_token_47|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "143770": {
428
+ "content": "<|reserved_special_token_48|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "143771": {
436
+ "content": "<|reserved_special_token_49|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "143772": {
444
+ "content": "<|reserved_special_token_50|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "143773": {
452
+ "content": "<|reserved_special_token_51|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "143774": {
460
+ "content": "<|reserved_special_token_52|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "143775": {
468
+ "content": "<|reserved_special_token_53|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "143776": {
476
+ "content": "<|reserved_special_token_54|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "143777": {
484
+ "content": "<|reserved_special_token_55|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "143778": {
492
+ "content": "<|reserved_special_token_56|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "143779": {
500
+ "content": "<|reserved_special_token_57|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "143780": {
508
+ "content": "<|reserved_special_token_58|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "143781": {
516
+ "content": "<|reserved_special_token_59|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "143782": {
524
+ "content": "<|reserved_special_token_60|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "143783": {
532
+ "content": "<|reserved_special_token_61|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "143784": {
540
+ "content": "<|reserved_special_token_62|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "143785": {
548
+ "content": "<|reserved_special_token_63|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "143786": {
556
+ "content": "<|reserved_special_token_64|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "143787": {
564
+ "content": "<|reserved_special_token_65|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "143788": {
572
+ "content": "<|reserved_special_token_66|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "143789": {
580
+ "content": "<|reserved_special_token_67|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "143790": {
588
+ "content": "<|reserved_special_token_68|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "143791": {
596
+ "content": "<|reserved_special_token_69|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "143792": {
604
+ "content": "<|reserved_special_token_70|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "143793": {
612
+ "content": "<|reserved_special_token_71|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "143794": {
620
+ "content": "<|reserved_special_token_72|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "143795": {
628
+ "content": "<|reserved_special_token_73|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "143796": {
636
+ "content": "<|reserved_special_token_74|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "143797": {
644
+ "content": "<|reserved_special_token_75|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "143798": {
652
+ "content": "<|reserved_special_token_76|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "143799": {
660
+ "content": "<|reserved_special_token_77|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "143800": {
668
+ "content": "<|reserved_special_token_78|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "143801": {
676
+ "content": "<|reserved_special_token_79|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "143802": {
684
+ "content": "<|reserved_special_token_80|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "143803": {
692
+ "content": "<|reserved_special_token_81|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "143804": {
700
+ "content": "<|reserved_special_token_82|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "143805": {
708
+ "content": "<|reserved_special_token_83|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "143806": {
716
+ "content": "<|reserved_special_token_84|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "143807": {
724
+ "content": "<|reserved_special_token_85|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "143808": {
732
+ "content": "<|reserved_special_token_86|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "143809": {
740
+ "content": "<|reserved_special_token_87|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "143810": {
748
+ "content": "<|reserved_special_token_88|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "143811": {
756
+ "content": "<|reserved_special_token_89|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "143812": {
764
+ "content": "<|reserved_special_token_90|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "143813": {
772
+ "content": "<|reserved_special_token_91|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "143814": {
780
+ "content": "<|reserved_special_token_92|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "143815": {
788
+ "content": "<|reserved_special_token_93|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "143816": {
796
+ "content": "<|reserved_special_token_94|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "143817": {
804
+ "content": "<|reserved_special_token_95|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "143818": {
812
+ "content": "<|reserved_special_token_96|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "143819": {
820
+ "content": "<|reserved_special_token_97|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "143820": {
828
+ "content": "<|reserved_special_token_98|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "143821": {
836
+ "content": "<|reserved_special_token_99|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "143822": {
844
+ "content": "<|reserved_special_token_100|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "143823": {
852
+ "content": "<|reserved_special_token_101|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "143824": {
860
+ "content": "<|reserved_special_token_102|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "143825": {
868
+ "content": "<|reserved_special_token_103|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "143826": {
876
+ "content": "<|reserved_special_token_104|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "143827": {
884
+ "content": "<|reserved_special_token_105|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "143828": {
892
+ "content": "<|reserved_special_token_106|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "143829": {
900
+ "content": "<|reserved_special_token_107|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "143830": {
908
+ "content": "<|reserved_special_token_108|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "143831": {
916
+ "content": "<|reserved_special_token_109|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "143832": {
924
+ "content": "<|reserved_special_token_110|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "143833": {
932
+ "content": "<|reserved_special_token_111|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "143834": {
940
+ "content": "<|reserved_special_token_112|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "143835": {
948
+ "content": "<|reserved_special_token_113|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "143836": {
956
+ "content": "<|reserved_special_token_114|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "143837": {
964
+ "content": "<|reserved_special_token_115|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "143838": {
972
+ "content": "<|reserved_special_token_116|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "143839": {
980
+ "content": "<|reserved_special_token_117|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "143840": {
988
+ "content": "<|reserved_special_token_118|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "143841": {
996
+ "content": "<|reserved_special_token_119|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "143842": {
1004
+ "content": "<|reserved_special_token_120|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "143843": {
1012
+ "content": "<|reserved_special_token_121|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "143844": {
1020
+ "content": "<|reserved_special_token_122|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "143845": {
1028
+ "content": "<|reserved_special_token_123|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "143846": {
1036
+ "content": "<|reserved_special_token_124|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "143847": {
1044
+ "content": "<|reserved_special_token_125|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "143848": {
1052
+ "content": "<|reserved_special_token_126|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "143849": {
1060
+ "content": "<|reserved_special_token_127|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "143850": {
1068
+ "content": "<|reserved_special_token_128|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "143851": {
1076
+ "content": "<|reserved_special_token_129|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "143852": {
1084
+ "content": "<|reserved_special_token_130|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "143853": {
1092
+ "content": "<|reserved_special_token_131|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "143854": {
1100
+ "content": "<|reserved_special_token_132|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "143855": {
1108
+ "content": "<|reserved_special_token_133|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "143856": {
1116
+ "content": "<|reserved_special_token_134|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "143857": {
1124
+ "content": "<|reserved_special_token_135|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "143858": {
1132
+ "content": "<|reserved_special_token_136|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "143859": {
1140
+ "content": "<|reserved_special_token_137|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "143860": {
1148
+ "content": "<|reserved_special_token_138|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "143861": {
1156
+ "content": "<|reserved_special_token_139|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "143862": {
1164
+ "content": "<|reserved_special_token_140|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "143863": {
1172
+ "content": "<|reserved_special_token_141|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "143864": {
1180
+ "content": "<|reserved_special_token_142|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "143865": {
1188
+ "content": "<|reserved_special_token_143|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "143866": {
1196
+ "content": "<|reserved_special_token_144|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "143867": {
1204
+ "content": "<|reserved_special_token_145|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "143868": {
1212
+ "content": "<|reserved_special_token_146|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "143869": {
1220
+ "content": "<|reserved_special_token_147|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "143870": {
1228
+ "content": "<|reserved_special_token_148|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "143871": {
1236
+ "content": "<|reserved_special_token_149|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "143872": {
1244
+ "content": "<|reserved_special_token_150|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "143873": {
1252
+ "content": "<|reserved_special_token_151|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "143874": {
1260
+ "content": "<|reserved_special_token_152|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "143875": {
1268
+ "content": "<|reserved_special_token_153|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "143876": {
1276
+ "content": "<|reserved_special_token_154|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "143877": {
1284
+ "content": "<|reserved_special_token_155|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "143878": {
1292
+ "content": "<|reserved_special_token_156|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "143879": {
1300
+ "content": "<|reserved_special_token_157|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "143880": {
1308
+ "content": "<|reserved_special_token_158|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "143881": {
1316
+ "content": "<|reserved_special_token_159|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "143882": {
1324
+ "content": "<|reserved_special_token_160|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "143883": {
1332
+ "content": "<|reserved_special_token_161|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "143884": {
1340
+ "content": "<|reserved_special_token_162|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "143885": {
1348
+ "content": "<|reserved_special_token_163|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "143886": {
1356
+ "content": "<|reserved_special_token_164|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "143887": {
1364
+ "content": "<|reserved_special_token_165|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "143888": {
1372
+ "content": "<|reserved_special_token_166|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "143889": {
1380
+ "content": "<|reserved_special_token_167|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "143890": {
1388
+ "content": "<|reserved_special_token_168|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "143891": {
1396
+ "content": "<|reserved_special_token_169|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "143892": {
1404
+ "content": "<|reserved_special_token_170|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "143893": {
1412
+ "content": "<|reserved_special_token_171|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "143894": {
1420
+ "content": "<|reserved_special_token_172|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "143895": {
1428
+ "content": "<|reserved_special_token_173|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "143896": {
1436
+ "content": "<|reserved_special_token_174|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "143897": {
1444
+ "content": "<|reserved_special_token_175|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "143898": {
1452
+ "content": "<|reserved_special_token_176|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "143899": {
1460
+ "content": "<|reserved_special_token_177|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "143900": {
1468
+ "content": "<|reserved_special_token_178|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "143901": {
1476
+ "content": "<|reserved_special_token_179|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "143902": {
1484
+ "content": "<|reserved_special_token_180|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "143903": {
1492
+ "content": "<|reserved_special_token_181|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "143904": {
1500
+ "content": "<|reserved_special_token_182|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "143905": {
1508
+ "content": "<|reserved_special_token_183|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "143906": {
1516
+ "content": "<|reserved_special_token_184|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "143907": {
1524
+ "content": "<|reserved_special_token_185|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "143908": {
1532
+ "content": "<|reserved_special_token_186|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "143909": {
1540
+ "content": "<|reserved_special_token_187|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "143910": {
1548
+ "content": "<|reserved_special_token_188|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "143911": {
1556
+ "content": "<|reserved_special_token_189|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "143912": {
1564
+ "content": "<|reserved_special_token_190|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "143913": {
1572
+ "content": "<|reserved_special_token_191|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "143914": {
1580
+ "content": "<|reserved_special_token_192|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "143915": {
1588
+ "content": "<|reserved_special_token_193|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "143916": {
1596
+ "content": "<|reserved_special_token_194|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "143917": {
1604
+ "content": "<|reserved_special_token_195|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "143918": {
1612
+ "content": "<|reserved_special_token_196|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "143919": {
1620
+ "content": "<|reserved_special_token_197|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "143920": {
1628
+ "content": "<|reserved_special_token_198|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "143921": {
1636
+ "content": "<|reserved_special_token_199|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "143922": {
1644
+ "content": "<|reserved_special_token_200|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "143923": {
1652
+ "content": "<|reserved_special_token_201|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "143924": {
1660
+ "content": "<|reserved_special_token_202|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "143925": {
1668
+ "content": "<|reserved_special_token_203|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "143926": {
1676
+ "content": "<|reserved_special_token_204|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "143927": {
1684
+ "content": "<|reserved_special_token_205|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "143928": {
1692
+ "content": "<|reserved_special_token_206|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "143929": {
1700
+ "content": "<|reserved_special_token_207|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "143930": {
1708
+ "content": "<|reserved_special_token_208|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "143931": {
1716
+ "content": "<|reserved_special_token_209|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "143932": {
1724
+ "content": "<|reserved_special_token_210|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "143933": {
1732
+ "content": "<|reserved_special_token_211|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "143934": {
1740
+ "content": "<|reserved_special_token_212|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "143935": {
1748
+ "content": "<|reserved_special_token_213|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "143936": {
1756
+ "content": "<|reserved_special_token_214|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "143937": {
1764
+ "content": "<|reserved_special_token_215|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "143938": {
1772
+ "content": "<|reserved_special_token_216|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "143939": {
1780
+ "content": "<|reserved_special_token_217|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "143940": {
1788
+ "content": "<|reserved_special_token_218|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "143941": {
1796
+ "content": "<|reserved_special_token_219|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "143942": {
1804
+ "content": "<|reserved_special_token_220|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "143943": {
1812
+ "content": "<|reserved_special_token_221|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "143944": {
1820
+ "content": "<|reserved_special_token_222|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "143945": {
1828
+ "content": "<|reserved_special_token_223|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "143946": {
1836
+ "content": "<|reserved_special_token_224|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "143947": {
1844
+ "content": "<|reserved_special_token_225|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "143948": {
1852
+ "content": "<|reserved_special_token_226|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "143949": {
1860
+ "content": "<|reserved_special_token_227|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "143950": {
1868
+ "content": "<|reserved_special_token_228|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "143951": {
1876
+ "content": "<|reserved_special_token_229|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "143952": {
1884
+ "content": "<|reserved_special_token_230|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "143953": {
1892
+ "content": "<|reserved_special_token_231|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "143954": {
1900
+ "content": "<|reserved_special_token_232|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "143955": {
1908
+ "content": "<|reserved_special_token_233|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "143956": {
1916
+ "content": "<|reserved_special_token_234|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "143957": {
1924
+ "content": "<|reserved_special_token_235|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "143958": {
1932
+ "content": "<|reserved_special_token_236|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "143959": {
1940
+ "content": "<|reserved_special_token_237|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "143960": {
1948
+ "content": "<|reserved_special_token_238|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "143961": {
1956
+ "content": "<|reserved_special_token_239|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "143962": {
1964
+ "content": "<|reserved_special_token_240|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "143963": {
1972
+ "content": "<|reserved_special_token_241|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "143964": {
1980
+ "content": "<|reserved_special_token_242|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "143965": {
1988
+ "content": "<|reserved_special_token_243|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "143966": {
1996
+ "content": "<|reserved_special_token_244|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "143967": {
2004
+ "content": "<|reserved_special_token_245|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "143968": {
2012
+ "content": "<|reserved_special_token_246|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "143969": {
2020
+ "content": "<|reserved_special_token_247|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "143970": {
2028
+ "content": "<|reserved_special_token_248|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "143971": {
2036
+ "content": "<|reserved_special_token_249|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "143972": {
2044
+ "content": "<|reserved_special_token_250|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|end_of_text|>",
2056
+ "legacy": false,
2057
+ "model_input_names": [
2058
+ "input_ids",
2059
+ "attention_mask"
2060
+ ],
2061
+ "model_max_length": 2048,
2062
+ "pad_token": "<|end_of_text|>",
2063
+ "padding_side": "right",
2064
+ "tokenizer_class": "PreTrainedTokenizerFast"
2065
+ }