FLUX.1-dev-smashed / README.md
davidberenstein1957's picture
Update README.md
50d85b1 verified
---
library_name: diffusers
tags:
- pruna-ai
base_model:
- black-forest-labs/FLUX.1-dev
---
# Model Card for PrunaAI/FLUX.1-dev-smashed
This model was created using the [pruna](https://github.com/PrunaAI/pruna) library. Pruna is a model optimization framework built for developers, enabling you to deliver more efficient models with minimal implementation overhead.
## Usage
First things first, you need to install the pruna library:
```bash
pip install pruna
```
You can [use the diffusers library to load the model](https://huggingface.co/PrunaAI/FLUX.1-dev-smashed?library=diffusers) but this might not include all optimizations by default.
To ensure that all optimizations are applied, use the pruna library to load the model using the following code:
```python
from pruna import PrunaModel
loaded_model = PrunaModel.from_hub(
"PrunaAI/FLUX.1-dev-smashed"
)
```
After loading the model, you can use the inference methods of the original model. Take a look at the [documentation](https://pruna.readthedocs.io/en/latest/index.html) for more usage information.
## Smash Configuration
The compression configuration of the model is stored in the `smash_config.json` file, which describes the optimization methods that were applied to the model.
```bash
{
"batcher": null,
"cacher": "fora",
"compiler": "torch_compile",
"factorizer": "qkv_diffusers",
"pruner": null,
"quantizer": null,
"fora_interval": 2,
"fora_start_step": 2,
"torch_compile_backend": "inductor",
"torch_compile_dynamic": null,
"torch_compile_fullgraph": true,
"torch_compile_make_portable": false,
"torch_compile_max_kv_cache_size": 400,
"torch_compile_mode": "default",
"torch_compile_seqlen_manual_cuda_graph": 100,
"torch_compile_target": "model",
"batch_size": 1,
"device": "cuda",
"save_fns": [
"save_before_apply",
"save_before_apply"
],
"load_fns": [
"diffusers"
],
"reapply_after_load": {
"factorizer": "qkv_diffusers",
"pruner": null,
"quantizer": null,
"cacher": "fora",
"compiler": "torch_compile",
"batcher": null
}
}
```
## ๐ŸŒ Join the Pruna AI community!
[![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI)
[![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI)
[![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.com/invite/rskEr4BZJx)
[![Reddit](https://img.shields.io/reddit/subreddit-subscribers/PrunaAI?style=social)](https://www.reddit.com/r/PrunaAI/)