Upload folder using huggingface_hub

#3
README.md CHANGED
@@ -1,5 +1,6 @@
1
  ---
2
  thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
 
3
  metrics:
4
  - memory_disk
5
  - memory_inference
@@ -39,7 +40,7 @@ tags:
39
  **Frequently Asked Questions**
40
  - ***How does the compression work?*** The model is compressed with llm-int8.
41
  - ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
42
- - ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
43
  - ***What is the model format?*** We use safetensors.
44
  - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
45
  - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
@@ -59,15 +60,15 @@ You can run the smashed model with these steps:
59
  2. Load & run the model.
60
  ```python
61
  from transformers import AutoModelForCausalLM, AutoTokenizer
 
62
 
63
- model = AutoModelForCausalLM.from_pretrained("PrunaAI/MediaTek-Research-Breeze-7B-Instruct-v1_0-bnb-4bit-smashed",
64
- trust_remote_code=True, device_map='auto')
65
- tokenizer = AutoTokenizer.from_pretrained("MediaTek-Research/Breeze-7B-Instruct-v1_0")
66
 
67
- input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
68
 
69
- outputs = model.generate(input_ids, max_new_tokens=216)
70
- tokenizer.decode(outputs[0])
71
  ```
72
 
73
  ## Configurations
 
1
  ---
2
  thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
3
+ base_model: MediaTek-Research/Breeze-7B-Instruct-v1_0
4
  metrics:
5
  - memory_disk
6
  - memory_inference
 
40
  **Frequently Asked Questions**
41
  - ***How does the compression work?*** The model is compressed with llm-int8.
42
  - ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
43
+ - ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
44
  - ***What is the model format?*** We use safetensors.
45
  - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
46
  - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
 
60
  2. Load & run the model.
61
  ```python
62
  from transformers import AutoModelForCausalLM, AutoTokenizer
63
+
64
 
65
+ model = AutoModelForCausalLM.from_pretrained("PrunaAI/MediaTek-Research-Breeze-7B-Instruct-v1_0-bnb-4bit-smashed", trust_remote_code=True, device_map='auto')
66
+ tokenizer = AutoTokenizer.from_pretrained("MediaTek-Research/Breeze-7B-Instruct-v1_0")
 
67
 
68
+ input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
69
 
70
+ outputs = model.generate(input_ids, max_new_tokens=216)
71
+ tokenizer.decode(outputs[0])
72
  ```
73
 
74
  ## Configurations
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "<EOD>": 61873,
3
+ "<PAD>": 61874
4
+ }
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "/tmp/tmpxorsimq6",
3
  "architectures": [
4
  "MistralForCausalLM"
5
  ],
@@ -18,7 +18,10 @@
18
  "output_router_logits": true,
19
  "pretraining_tp": 1,
20
  "quantization_config": {
 
 
21
  "bnb_4bit_compute_dtype": "bfloat16",
 
22
  "bnb_4bit_quant_type": "fp4",
23
  "bnb_4bit_use_double_quant": false,
24
  "llm_int8_enable_fp32_cpu_offload": false,
@@ -36,7 +39,7 @@
36
  "sliding_window": 4096,
37
  "tie_word_embeddings": false,
38
  "torch_dtype": "float16",
39
- "transformers_version": "4.37.1",
40
  "use_cache": false,
41
  "vocab_size": 61952
42
  }
 
1
  {
2
+ "_name_or_path": "/ceph/hdd/staff/charpent/.cache/modelsl3wdi4gvxd25yvro",
3
  "architectures": [
4
  "MistralForCausalLM"
5
  ],
 
18
  "output_router_logits": true,
19
  "pretraining_tp": 1,
20
  "quantization_config": {
21
+ "_load_in_4bit": true,
22
+ "_load_in_8bit": false,
23
  "bnb_4bit_compute_dtype": "bfloat16",
24
+ "bnb_4bit_quant_storage": "uint8",
25
  "bnb_4bit_quant_type": "fp4",
26
  "bnb_4bit_use_double_quant": false,
27
  "llm_int8_enable_fp32_cpu_offload": false,
 
39
  "sliding_window": 4096,
40
  "tie_word_embeddings": false,
41
  "torch_dtype": "float16",
42
+ "transformers_version": "4.40.0",
43
  "use_cache": false,
44
  "vocab_size": 61952
45
  }
generation_config.json CHANGED
@@ -2,5 +2,5 @@
2
  "_from_model_config": true,
3
  "bos_token_id": 1,
4
  "eos_token_id": 2,
5
- "transformers_version": "4.37.1"
6
  }
 
2
  "_from_model_config": true,
3
  "bos_token_id": 1,
4
  "eos_token_id": 2,
5
+ "transformers_version": "4.40.0"
6
  }
smash_config.json CHANGED
@@ -3,17 +3,21 @@
3
  "verify_url": "http://johnrachwan.pythonanywhere.com",
4
  "smash_config": {
5
  "pruners": "None",
 
6
  "factorizers": "None",
7
  "quantizers": "['llm-int8']",
 
 
8
  "compilers": "None",
9
- "task": "text_text_generation",
 
 
 
10
  "device": "cuda",
11
- "cache_dir": "/ceph/hdd/staff/charpent/.cache/modelsa_y4ult5",
12
  "batch_size": 1,
13
  "model_name": "MediaTek-Research/Breeze-7B-Instruct-v1_0",
14
- "pruning_ratio": 0.0,
15
- "n_quantization_bits": 4,
16
- "output_deviation": 0.005,
17
  "max_batch_size": 1,
18
  "qtype_weight": "torch.qint8",
19
  "qtype_activation": "torch.quint8",
 
3
  "verify_url": "http://johnrachwan.pythonanywhere.com",
4
  "smash_config": {
5
  "pruners": "None",
6
+ "pruning_ratio": 0.0,
7
  "factorizers": "None",
8
  "quantizers": "['llm-int8']",
9
+ "weight_quantization_bits": 4,
10
+ "output_deviation": 0.005,
11
  "compilers": "None",
12
+ "static_batch": true,
13
+ "static_shape": true,
14
+ "controlnet": "None",
15
+ "unet_dim": 4,
16
  "device": "cuda",
17
+ "cache_dir": "/ceph/hdd/staff/charpent/.cache/modelsl3wdi4gv",
18
  "batch_size": 1,
19
  "model_name": "MediaTek-Research/Breeze-7B-Instruct-v1_0",
20
+ "task": "text_text_generation",
 
 
21
  "max_batch_size": 1,
22
  "qtype_weight": "torch.qint8",
23
  "qtype_activation": "torch.quint8",
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9298e56c094f0d30431b0e52ad53287f0cadc99ac8ca17cc2144b0eb4753f130
3
+ size 911034
tokenizer_config.json ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "61873": {
31
+ "content": "<EOD>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "61874": {
39
+ "content": "<PAD>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ }
46
+ },
47
+ "bos_token": "<s>",
48
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'].strip() %}{% else %}{% set loop_messages = messages %}{% set system_message = 'You are a helpful AI assistant built by MediaTek Research. The user you are helping speaks Traditional Chinese and comes from Taiwan.' %}{% endif %}{{ bos_token }} {{ system_message }} {% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/... or system/user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ ' [INST] ' + message['content'] + ' [/INST] ' }}{% elif message['role'] == 'assistant' %}{{ message['content'] }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
49
+ "clean_up_tokenization_spaces": false,
50
+ "eos_token": "</s>",
51
+ "legacy": false,
52
+ "model_max_length": 1000000000000000019884624838656,
53
+ "pad_token": "</s>",
54
+ "sp_model_kwargs": {},
55
+ "spaces_between_special_tokens": false,
56
+ "tokenizer_class": "LlamaTokenizer",
57
+ "unk_token": "<unk>",
58
+ "use_default_system_prompt": false,
59
+ "use_fast": true
60
+ }