File size: 76,886 Bytes
3fe15d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 |
from dataclasses import dataclass
import dataclasses
from typing import List, Optional, Tuple, Union
import ast
import re
from enum import auto, Enum
import requests
from PIL import Image
from io import BytesIO
import base64
import time
import torch
import torch.utils.checkpoint
from torch import nn, Tensor
from torch.nn import functional as F
from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.generation.utils import GenerateOutput
from transformers import CLIPVisionModel, CLIPImageProcessor,SiglipVisionModel, SiglipImageProcessor
from transformers import AutoConfig, AutoModelForCausalLM
from .configuration import TinyLlavaConfig, IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
# from tinyllava.utils.data_utils import get_value_from_kwargs
CONTROLLER_HEART_BEAT_EXPIRATION = 30
WORKER_HEART_BEAT_INTERVAL = 15
LOGDIR = "."
import os
#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
#
from torch.nn import CrossEntropyLoss
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
)
from transformers.utils import logging
logger = logging.get_logger(__name__)
# this import has to be relative, otherwise, when setting trust_remote_code=True
# huggingface transformers won't be able to load the module correctly
from numbers import Number
from typing import List, Optional, Union
import numpy as np
from transformers import PretrainedConfig, AutoTokenizer
logger = logging.get_logger(__name__)
# Model Constants
IGNORE_INDEX = -100
IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
IMAGE_PLACEHOLDER = "<image-placeholder>"
CONTROLLER_HEART_BEAT_EXPIRATION = 30
WORKER_HEART_BEAT_INTERVAL = 15
LOGDIR = "."
class SeparatorStyle(Enum):
"""Different separator style."""
SINGLE = auto()
TWO = auto()
MPT = auto()
PLAIN = auto()
LLAMA_2 = auto()
TINY_LLAMA = auto()
QWEN_2 = auto()
@dataclasses.dataclass
class Conversation:
"""A class that keeps all conversation history."""
system: str
roles: List[str]
messages: List[List[str]]
offset: int
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
sep: str = "###"
sep2: str = None
version: str = "Unknown"
skip_next: bool = False
def get_prompt(self):
messages = self.messages
if len(messages) > 0 and type(messages[0][1]) is tuple:
messages = self.messages.copy()
init_role, init_msg = messages[0].copy()
init_msg = init_msg[0].replace("<image>", "").strip()
if 'mmtag' in self.version:
messages[0] = (init_role, init_msg)
messages.insert(0, (self.roles[0], "<Image><image></Image>"))
messages.insert(1, (self.roles[1], "Received."))
else:
messages[0] = (init_role, "<image>\n" + init_msg)
if self.sep_style == SeparatorStyle.TWO:
seps = [self.sep, self.sep2]
ret = self.system + seps[0]
for i, (role, message) in enumerate(messages):
if message:
if type(message) is tuple:
message, _, _ = message
ret += role + ": " + message + seps[i % 2]
else:
ret += role + ":"
else:
raise ValueError(f"Invalid style: {self.sep_style}")
return ret
def append_message(self, role, message):
self.messages.append([role, message])
def copy(self):
return Conversation(
system=self.system,
roles=self.roles,
messages=[[x, y] for x, y in self.messages],
offset=self.offset,
sep_style=self.sep_style,
sep=self.sep,
sep2=self.sep2,
version=self.version)
conv_phi_v0 = Conversation(
system="A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
roles=("USER", "ASSISTANT"),
version="phi",
messages=(),
offset=0,
sep_style=SeparatorStyle.TWO,
sep=" ",
sep2="<|endoftext|>",
)
def load_image_from_base64(image):
return Image.open(BytesIO(base64.b64decode(image)))
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def process_images(images, image_processor, model_cfg):
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
new_images = []
if image_aspect_ratio == 'pad':
for image in images:
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
new_images.append(image)
else:
return image_processor(images, return_tensors='pt')['pixel_values']
if all(x.shape == new_images[0].shape for x in new_images):
new_images = torch.stack(new_images, dim=0)
return new_images
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
def insert_separator(X, sep):
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
input_ids = []
offset = 0
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
offset = 1
input_ids.append(prompt_chunks[0][0])
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
input_ids.extend(x[offset:])
if return_tensors is not None:
if return_tensors == 'pt':
return torch.tensor(input_ids, dtype=torch.long)
raise ValueError(f'Unsupported tensor type: {return_tensors}')
return input_ids
def load_image(image_file):
if image_file.startswith("http") or image_file.startswith("https"):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert("RGB")
else:
image = Image.open(image_file).convert("RGB")
return image
def make_divisible(
v: Union[float, int],
divisor: Optional[int] = 8,
min_value: Optional[Union[float, int]] = None,
) -> Union[float, int]:
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by the divisor
It can be seen at:
https://github.com/tensorflow/models/blob/2cfc99eff5e5eb729c6793d2f3d03aa1c9be2b15/research/slim/nets/mobilenet/mobilenet.py#L62
Args:
v: input value
divisor: default to 8
min_value: minimum divisor value
Returns:
new_v: new divisible value
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
def compute_heads(model_dim: int, head_dim: int) -> int:
"""Compute the number of heads.
Args:
model_dim: Model dimension.
head_dim: Head dimension.
Returns:
An integer denoting number of heads in multi-head attention is returned.
Raises:
ValueError: if model dimension is not divisible by head dimension.
"""
if model_dim % head_dim == 0:
return model_dim // head_dim
else:
raise ValueError(
f"Model dimension should be divisible by head dimension. Got: {model_dim} and {head_dim}."
)
OpenELM_CONFIGS = {
"OpenELM-270M": dict(
num_transformer_layers=16,
model_dim=1280,
head_dim=64,
num_gqa_groups=4,
normalize_qk_projections=True,
share_input_output_layers=True,
# Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
ffn_multipliers=(0.5, 4.0),
qkv_multipliers=(0.5, 1.0),
),
"OpenELM-450M": dict(
num_transformer_layers=20,
model_dim=1536,
head_dim=64,
num_gqa_groups=4,
normalize_qk_projections=True,
share_input_output_layers=True,
# Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
ffn_multipliers=(0.5, 4.0),
qkv_multipliers=(0.5, 1.0),
),
"OpenELM-1_1B": dict(
num_transformer_layers=28,
model_dim=2048,
head_dim=64,
num_gqa_groups=4,
normalize_qk_projections=True,
share_input_output_layers=True,
# Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
ffn_multipliers=(0.5, 4.0),
qkv_multipliers=(0.5, 1.0),
),
"OpenELM-3B": dict(
num_transformer_layers=36,
model_dim=3072,
head_dim=128,
num_gqa_groups=4,
normalize_qk_projections=True,
share_input_output_layers=True,
# Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
ffn_multipliers=(0.5, 4.0),
qkv_multipliers=(0.5, 1.0),
),
}
class OpenELMConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`OpenELMModel`]. It is used to instantiate an OpenELM model according to the specified arguments, defining the model architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the OpenELM model.
max_context_length (`int`, *optional*, defaults to 2048):
Maximum number of input tokens.
num_transformer_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer decoder.
model_dim (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
head_dim (`int`, *optional*, defaults to 128):
The attention head dimension.
qkv_multipliers (`Union[Number, List[Number]]`, *optional*, defaults to 1.0):
If the qkv_multipliers is a Number, then all attention layers have the same latent dimensions,
resulting in uniform allocation of parameters.
If the qkv_multipliers is a List of Number, then each attention layer have different latent dimensions
assuming qkv_multipliers[0] != qkv_multipliers[1]. This results in variable allocation of parameters in attention layer.
This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
num_query_heads (`Union[int, None]`, *optional*, defaults to None):
The number of query heads, computed from `compute_heads(model_dim=model_dim, head_dim=head_dim)`.
num_gqa_groups (`int`, *optional*, defaults to 1):
This variable allows to switch between multi-head attention, group query attention, and multi-query attention.
When num_gqa_groups == 1, then it is multi-head attention.
When 1 < num_gqa_groups < num_heads and num_heads is divisible by num_gqa_groups, then it is group query attention
When num_gqa_groups == num_heads, then it is multi-query attention
ffn_multipliers (`Union[Number, List[Number]]`, *optional*, defaults to 4.0):
Feed-forward network (FFN) multipliers.
If the ffn_multipliers is a Number, then all FFN layers have the same latent dimensions,
resulting in uniform allocation of parameters.
If the ffn_multipliers is a List of Number, then each FFN layer have different latent dimensions
assuming ffn_multipliers[0] != ffn_multipliers[1]. This results in variable allocation of parameters in FFN layer.
This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
ffn_with_glu (`bool`, *optional*, defaults to True):
Whether to use FFN with Gated Linear Unit (GLU)
ffn_dim_divisor (`int`, *optional*, defaults to 256):
The ffn layer dimension divisor.
activation_fn_name (`str` or `function`, *optional*, defaults to `"swish"`):
The non-linear activation function (function or string) in the decoder.
normalization_layer_name (`str` or `function`, *optional*, defaults to `"rms_norm"`):
Type of normalization layer.
normalize_qk_projections (`bool`, *optional*, defaults to False):
Whether to normalize queries and keys after projections
share_input_output_layers (`bool`, *optional*, defaults to False):
Whether to share the embedding between input and output linear layer
rope_freq_constant (`int`, *optional*, defaults to 10000):
The base period of the RoPE embeddings.
rope_max_length (`int`, *optional*, defaults to 4096):
That rope_max_length is set to twice of max_context_length.
This allows flexibility in token lengths during training or fine-tuning.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
bos_token_id (`int`, *optional*, defaults to 2):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 1):
End of stream token id.
"""
model_type = "openelm"
def __init__(
self,
vocab_size: int = 32000,
max_context_length: int = 2048,
num_transformer_layers: int = 12,
model_dim: int = 2048,
head_dim: int = 128,
qkv_multipliers: Union[Number, List[Number]] = 1.0,
num_query_heads: Union[int, None] = None,
num_gqa_groups: int = 1,
ffn_multipliers: Union[Number, List[Number]] = 4.0,
ffn_with_glu: bool = True,
ffn_dim_divisor: int = 256,
activation_fn_name: str = "swish",
normalization_layer_name: str = "rms_norm",
normalize_qk_projections: bool = False,
share_input_output_layers: bool = False,
rope_freq_constant: int = 10000,
rope_max_length: int = 4096,
initializer_range: float = 0.02,
use_cache: bool = True,
bos_token_id: int = 1,
eos_token_id: int = 2,
**kwargs,
) -> None:
self.vocab_size = vocab_size
self.max_context_length = max_context_length
self.num_transformer_layers = num_transformer_layers
self.model_dim = model_dim
self.head_dim = head_dim
self.qkv_multipliers = qkv_multipliers
self.num_query_heads = num_query_heads
self.num_gqa_groups = num_gqa_groups
self.ffn_multipliers = ffn_multipliers
self.ffn_with_glu = ffn_with_glu
self.ffn_dim_divisor = ffn_dim_divisor
self.activation_fn_name = activation_fn_name
self.normalization_layer_name = normalization_layer_name
self.normalize_qk_projections = normalize_qk_projections
self.share_input_output_layers = share_input_output_layers
self.rope_freq_constant = rope_freq_constant
self.rope_max_length = rope_max_length
self.num_query_heads = (
compute_heads(model_dim=model_dim, head_dim=head_dim)
if num_query_heads is None
else num_query_heads
)
self.initializer_range = initializer_range
self.__post_init__()
super().__init__(
use_cache=use_cache,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
**kwargs,
)
def __post_init__(self) -> None:
if self.num_gqa_groups is not None:
head_multiple_of = self.num_gqa_groups
else:
head_multiple_of = 2
if isinstance(self.qkv_multipliers, Number):
# All attention layers have the same latent dimensions, resulting in uniform allocation of parameters.
qkv_dim = make_divisible(
self.model_dim * self.qkv_multipliers,
divisor=self.head_dim * head_multiple_of,
)
query_dims = [int(qkv_dim)] * self.num_transformer_layers
elif (
isinstance(self.qkv_multipliers, (tuple, list))
and len(self.qkv_multipliers) == 2
):
# Each attention layer have different latent dimensions assuming qkv_multipliers[0] != qkv_multipliers[1].
# This results in variable allocation of parameters in attention layer.
# This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
qkv_multipliers = [
round(v, 2)
for v in np.linspace(
self.qkv_multipliers[0],
self.qkv_multipliers[1],
num=self.num_transformer_layers,
dtype=float,
)
]
# Make sure that scaled model dimension is divisible by scaled head dimension.
query_dims = [
int(
make_divisible(
self.model_dim * m, divisor=self.head_dim * head_multiple_of
)
)
for m in qkv_multipliers
]
else:
raise NotImplementedError(
f"QKV multipliers should be a single number or a list containing exactly two numbers. Got: {qkv_multipliers}."
)
# compute the number of query, key, and value heads
# For multi-head and multi-query attention, the number of heads for query, key, and value are the same.
# For group query attention, the number of key and value heads are the same.
self.num_query_heads = [
int(compute_heads(q_dim, self.head_dim)) for q_dim in query_dims
]
self.num_kv_heads = [
q_heads // self.num_gqa_groups for q_heads in self.num_query_heads
]
# Feed-forward network (FFN) multipliers
if isinstance(self.ffn_multipliers, Number):
# All FFN layers have the same latent dimensions, resulting in uniform allocation of parameters.
self.ffn_multipliers = [self.ffn_multipliers] * self.num_transformer_layers
elif isinstance(self.ffn_multipliers, (tuple, list)):
# Each FFN layer have different latent dimensions assuming ffn_multipliers[0] != ffn_multipliers[1].
# This results in variable allocation of parameters in FFN layer.
# This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
if len(self.ffn_multipliers) == 2:
self.ffn_multipliers = [
round(v, 2)
for v in np.linspace(
self.ffn_multipliers[0],
self.ffn_multipliers[1],
num=self.num_transformer_layers,
dtype=float,
)
]
else:
assert (
len(self.ffn_multipliers) == self.num_transformer_layers
), f"{len(self.ffn_multipliers)=}!={self.num_transformer_layers=}"
else:
raise NotImplementedError(
f"FFN multipliers should be a single number or a list containing exactly two numbers. Got: {qkv_multipliers}."
)
# check num_query_heads divisible by num_kv_heads for every layer
for layer_idx in range(len(query_dims)):
assert self.num_query_heads[layer_idx] % self.num_kv_heads[layer_idx] == 0
class OpenELMRMSNorm(nn.Module):
def __init__(self, num_features: int, eps: float = 1e-6):
"""
Initialize the OpenELMRMSNorm normalization layer.
Args:
dim (int): The dimension of the input tensor.
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
Attributes:
eps (float): A small value added to the denominator for numerical stability.
weight (nn.Parameter): Learnable scaling parameter.
"""
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(num_features))
self.num_features = num_features
def _norm(self, x: Tensor) -> Tensor:
"""
Apply the OpenELMRMSNorm normalization to the input tensor.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The normalized tensor.
"""
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x: Tensor) -> Tensor:
"""
Forward pass through the OpenELMRMSNorm layer.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The output tensor after applying OpenELMRMSNorm.
"""
output = self._norm(x.float()).type_as(x)
return output * self.weight
def extra_repr(self) -> str:
return (
super().extra_repr() + f"num_features={self.num_features}, eps={self.eps}"
)
class OpenELMPreTrainedModel(PreTrainedModel):
config_class = OpenELMConfig
base_model_prefix = "transformer"
supports_gradient_checkpointing = True
_no_split_modules = ["OpenELMDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
def __init__(self, *inputs, **kwargs) -> None:
super().__init__(*inputs, **kwargs)
def _init_weights(self, module: nn.Module) -> None:
"""Initialize the weights."""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, OpenELMRMSNorm):
module.weight.data.fill_(1.0)
def _rotate_half(x: Tensor) -> Tensor:
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def _apply_rotary_pos_emb(x: Tensor, pos_sin: Tensor, pos_cos: Tensor) -> Tensor:
return (x * pos_cos) + (_rotate_half(x) * pos_sin)
class OpenELMRotaryEmbedding(torch.nn.Module):
"""
The rotary position embeddings (aka RoPE) from `RoFormer <https://arxiv.org/abs/2104.09864>`_.
RoPE encodes the position information of tokens using a rotation matrix, and is able to capture
explicit relative positional dependencies.
Args:
model_dim: The dimensionality of the model's hidden state.
max_seq_length: Maximum sequence length.
freq_constant: A constant used for computing frequencies.
"""
def __init__(
self, model_dim: int, max_seq_length: int, freq_constant: int = 10000
) -> None:
inv_freq = 1.0 / (
freq_constant
** (torch.arange(0, model_dim, 2, dtype=torch.float32) / model_dim)
)
super().__init__()
self.model_dim = model_dim
self.freq_constant = freq_constant
self.max_seq_length = max_seq_length
self.register_buffer("inv_freq", inv_freq, persistent=False)
self._cached_cos = None
self._cached_sin = None
self._cached_seq_length = max_seq_length
self._compute_sin_cos_embeddings(max_seq_length)
def extra_repr(self) -> str:
return f"\tmodel_dim={self.model_dim}, max_seq_length={self.max_seq_length}, freq_constant={self.freq_constant}"
def _compute_sin_cos_embeddings(
self,
key_len: int,
key_device: torch.device = torch.device("cpu"),
key_dtype: torch.dtype = torch.float32,
) -> None:
"""
Compute sine and cos embeddings.
Args:
key_len: Number of tokens in the key embeddings in the transformer model.
device: Device where the key embeddings are stored.
key_dtype: Data type of the key embeddings.
Returns:
None
...note:
We recalculate the sine and cosine embeddings if any of the following conditions are met:
1. The number of tokens in key embeddings are greater than the cached sequence length.
2. Sine and cosine caches are empty.
3. The device and data type of sine and cosine embeddings does not match with the key embeddings.
"""
if (
key_len > self._cached_seq_length
or self._cached_cos is None
or (self._cached_cos is not None and self._cached_cos.device != key_device)
or (self._cached_cos is not None and self._cached_cos.dtype != key_dtype)
or self._cached_sin is None
or (self._cached_sin is not None and self._cached_sin.device != key_device)
or (self._cached_sin is not None and self._cached_sin.dtype != key_dtype)
):
self._cached_seq_length = max(key_len, self._cached_seq_length)
# The shape of 'pos_index' is [number of key tokens]
pos_index = torch.arange(
self._cached_seq_length,
dtype=torch.float32,
device=self.inv_freq.device,
)
# The shape of 'pos_index_theta' is [number of key tokens, model dimension]
pos_index_theta = torch.einsum("i,j->ij", pos_index, self.inv_freq)
# The shape of 'emb' is [number of key tokens, model dimension]
emb = torch.cat((pos_index_theta, pos_index_theta), dim=-1)
# the shape of cos and sin embeddings is [number of key tokens, model_dim]
cos_emb = emb.cos().to(dtype=key_dtype, device=key_device)
sin_emb = emb.sin().to(dtype=key_dtype, device=key_device)
# the shape of cached cos and sin embeddings is [1, 1, number of key tokens, model_dim]
self._cached_cos = cos_emb[None, None, :, :]
self._cached_sin = sin_emb[None, None, :, :]
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
The forward function of RoPE embeddings.
Args:
query: Query embeddings in the transformer model. The shape of query embeddings is
[Batch, number of query heads, number of query tokens, model dimension].
key: Key embeddings in the transformer model. The shape of key embeddings is
[Batch, number of key heads, number of key tokens, model dimension].
Returns:
A tuple containing the query and key embeddings with positional information. The shape of the returned query
and key embeddings is the same as the input query and key embeddings respectively.
...note:
The RoPE embedding computation is done in full-precision. After the computation, input query and key tensors
are casted to original input datatype.
"""
dim = key.shape[-1]
key_len = key.shape[2]
query_len = query.shape[2]
assert dim == self.model_dim
assert key.device == query.device
assert key.dtype == query.dtype
# In the context of self-attention, the lengths of keys and queries are equal.
# However, in generation tasks, such as predicting the next token in a sequence, the lengths of keys and queries
# can differ. For instance, when employing key-value (KV) caching for sequence prediction, the keys
# represent embeddings of previous tokens and the current token, while the query corresponds
# to the embedding of the current token only.
assert (
key_len >= query_len
), "Number of keys has to be greater than or equal to number of queries."
query_float = query.float()
key_float = key.float()
self._compute_sin_cos_embeddings(
key_len, key_device=key_float.device, key_dtype=key_float.dtype
)
query_float = _apply_rotary_pos_emb(
x=query_float,
pos_sin=self._cached_sin[..., key_len - query_len : key_len, :],
pos_cos=self._cached_cos[..., key_len - query_len : key_len, :],
)
key_float = _apply_rotary_pos_emb(
x=key_float,
pos_sin=self._cached_sin[..., :key_len, :],
pos_cos=self._cached_cos[..., :key_len, :],
)
return query_float.type_as(query), key_float.type_as(key)
class OpenELMMultiHeadCausalAttention(nn.Module):
def __init__(self, config: OpenELMConfig, layer_idx: int) -> None:
super().__init__()
self.layer_idx = layer_idx
head_dim = config.head_dim
q_heads = config.num_query_heads[layer_idx]
k_heads = config.num_kv_heads[layer_idx]
v_heads = config.num_kv_heads[layer_idx]
self.qkv_proj = nn.Linear(
in_features=config.model_dim,
out_features=(q_heads + k_heads + v_heads) * head_dim,
bias=False,
)
self.pos_embedding = OpenELMRotaryEmbedding(
model_dim=config.head_dim,
max_seq_length=config.rope_max_length,
freq_constant=config.rope_freq_constant,
)
if config.normalize_qk_projections:
self.q_norm = OpenELMRMSNorm(
num_features=config.head_dim,
)
self.k_norm = OpenELMRMSNorm(
num_features=config.head_dim,
)
else:
self.q_norm = None
self.k_norm = None
self.out_proj = nn.Linear(
in_features=q_heads * head_dim,
out_features=config.model_dim,
bias=False,
)
self.head_dim = config.head_dim
self.num_q_heads = q_heads
self.num_k_heads = k_heads
self.num_v_heads = v_heads
self.transformer_dim = config.model_dim
self.num_groups = self.num_q_heads // self.num_k_heads
def extra_repr(self) -> str:
return (
super().extra_repr()
+ f"query_heads={self.num_q_heads}, key_heads={self.num_k_heads}, value_heads={self.num_v_heads}"
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""
Forward pass of multi-head self-attention.
Args:
hidden_states: Input tensor of the shape [batch size, sequence length, model dimension].
past_key_value: Tensor storing the cached keys and values.
output_attentions: output attention weights.
use_cache: Specifies whether to use kv-cache for generation.
cache_position: used for updating the kv-cache.
Returns:
The output of the same shape as the input, optionally with a tensor containing cached keys and values.
"""
# scaled_dot_product_attention does not return attention weights, set output_attentions to False
output_attentions = False
batch_size, seq_length, d_model = hidden_states.size()
# [B, S, d] --> [B, S, (q_h + k_h + v_h) * h]
qkv = self.qkv_proj(hidden_states)
# [B, S, (q_h + k_h + v_h) * h] --> [B, S, (q_h + k_h + v_h), h]
qkv = qkv.reshape(
batch_size,
seq_length,
self.num_q_heads + self.num_k_heads + self.num_v_heads,
self.head_dim,
)
# [B, S, (q_h + k_h + v_h), h] --> [B, (q_h + k_h + v_h), S, h]
qkv = qkv.transpose(1, 2)
# [B, (q_h + k_h + v_h), S, h] --> [B, q_h, S h], [B, k_h, S, h], [B, v_h, S, h]
queries, keys, values = qkv.split(
[self.num_q_heads, self.num_k_heads, self.num_v_heads], dim=1
)
if self.q_norm is not None:
queries = self.q_norm(queries)
if self.k_norm is not None:
keys = self.k_norm(keys)
past_key_value = getattr(self, "past_key_value", past_key_value)
if past_key_value is not None:
# sin and cos are specific to RoPE models; position_ids needed for the static cache
# cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
cache_kwargs = {"cache_position": cache_position}
keys, values = past_key_value.update(
keys, values, self.layer_idx, cache_kwargs
)
# Add positional embedding
queries, keys = self.pos_embedding(queries, keys)
if self.num_groups != 1:
# GQA
# [B, k_h, S, h] --> [B, q_h, S, h]
keys = keys.repeat_interleave(self.num_groups, dim=1)
# [B, v_h, S, h] --> [B, q_h, S, h]
values = values.repeat_interleave(self.num_groups, dim=1)
causal_mask = attention_mask
if attention_mask is not None and cache_position is not None:
causal_mask = causal_mask[:, :, cache_position, : keys.shape[-2]]
attn_output = F.scaled_dot_product_attention(
queries,
keys,
values,
attn_mask=causal_mask,
dropout_p=0,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(
batch_size, seq_length, self.num_q_heads * self.head_dim
)
attn_output = self.out_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class OpenELMFeedForwardNetwork(nn.Module):
def __init__(self, config: OpenELMConfig, layer_idx: int) -> None:
super().__init__()
ffn_multiplier = config.ffn_multipliers[layer_idx]
intermediate_dim = int(
make_divisible(
ffn_multiplier * config.model_dim,
divisor=config.ffn_dim_divisor,
)
)
if config.ffn_with_glu:
# FFN with Gated linear unit, as described in https://arxiv.org/abs/2002.05202v1.
self.proj_1 = nn.Linear(
in_features=config.model_dim,
out_features=2 * intermediate_dim,
bias=False,
)
self.proj_2 = nn.Linear(
in_features=intermediate_dim,
out_features=config.model_dim,
bias=False,
)
self.ffn_with_glu = True
else:
# Standard FFN, as described in https://arxiv.org/abs/1706.03762
self.proj_1 = nn.Linear(
in_features=config.model_dim,
out_features=intermediate_dim,
bias=False,
)
self.proj_2 = nn.Linear(
in_features=intermediate_dim,
out_features=config.model_dim,
bias=False,
)
self.ffn_with_glu = False
self.act = ACT2FN[config.activation_fn_name]
def extra_repr(self) -> str:
return super().extra_repr() + f"(ffn_with_glu) : {self.ffn_with_glu}"
def forward(self, x: Tensor) -> Tensor:
"""Forward function of FFN layer.
Args:
x: Input tensor of the shape [batch size, sequence length, model dimension].
Returns:
A tensor of the same shape as the input.
"""
if self.ffn_with_glu:
y_12 = self.proj_1(x)
y_1, y_2 = y_12.chunk(2, dim=-1)
y = self.act(y_1) * y_2
return self.proj_2(y)
else:
return self.proj_2(self.act(self.proj_1(x)))
class OpenELMDecoderLayer(nn.Module):
def __init__(self, config: OpenELMConfig, layer_idx: int) -> None:
super().__init__()
self.attn = OpenELMMultiHeadCausalAttention(config=config, layer_idx=layer_idx)
self.ffn = OpenELMFeedForwardNetwork(config=config, layer_idx=layer_idx)
self.ffn_norm = OpenELMRMSNorm(
num_features=config.model_dim,
)
self.attn_norm = OpenELMRMSNorm(
num_features=config.model_dim,
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*):
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
query_sequence_length, key_sequence_length)` if default attention is used.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
"""
residual = hidden_states
hidden_states = self.attn_norm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.ffn_norm(hidden_states)
hidden_states = self.ffn(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
class OpenELMModel(OpenELMPreTrainedModel):
config_class = OpenELMConfig
def __init__(self, config: OpenELMConfig):
super().__init__(config)
self.config = config
self.token_embeddings = nn.Embedding(
embedding_dim=config.model_dim,
num_embeddings=config.vocab_size,
)
self.layers = nn.ModuleList(
OpenELMDecoderLayer(config=config, layer_idx=layer_idx)
for layer_idx in range(config.num_transformer_layers)
)
self.norm = OpenELMRMSNorm(num_features=config.model_dim)
if config.share_input_output_layers:
self.classifier = None
else:
self.classifier = nn.Linear(
in_features=config.model_dim,
out_features=config.vocab_size,
bias=False,
)
self.num_transformer_layers = config.num_transformer_layers
self.gradient_checkpointing = False
# Register a causal mask to separate causal and padding mask creation. Merging happens in the attention class.
# NOTE: This is not friendly with TorchScript, ONNX, ExportedProgram serialization for very large `max_context_length`.
causal_mask = torch.full(
(config.max_context_length, config.max_context_length),
fill_value=True,
dtype=torch.bool,
)
self.register_buffer(
"causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False
)
# Initialize weights and apply final processing
self.post_init()
self.reset_parameters(config=config)
def get_input_embeddings(self):
return self.token_embeddings
def set_input_embeddings(self, new_embeddings: torch.Tensor):
self.token_embeddings = new_embeddings
def reset_parameters(self, config: OpenELMConfig) -> None:
"""Initialize the layers in Language Model
The initialization scheme is followed, following `OPT <https://arxiv.org/pdf/2205.01068.pdf>`_.
Args:
use_megatron_std: Use standard deviation as described in Megatron-LM.
Returns:
None
"""
for module in self.modules():
if isinstance(module, nn.Linear):
std = module.in_features**-0.5
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
std = module.embedding_dim**-0.5
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
elif isinstance(module, OpenELMRMSNorm):
if module.weight is not None:
torch.nn.init.ones_(module.weight)
if hasattr(module, "bias") and module.bias is not None:
torch.nn.init.zeros_(module.bias)
model_dim = config.model_dim
n_layers = config.num_transformer_layers
std = (model_dim**-0.5) * ((2 * n_layers) ** -0.5)
for param_name, param in self.named_parameters():
if param_name.endswith("out_proj.weight") or param_name.endswith(
"ffn.proj_2.weight"
):
torch.nn.init.normal_(param, mean=0.0, std=std)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.token_embeddings(input_ids)
past_seen_tokens = 0
if use_cache: # kept for BC (cache positions)
if not isinstance(past_key_values, StaticCache):
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_seen_tokens = past_key_values.get_seq_length()
if cache_position is None:
cache_position = torch.arange(
past_seen_tokens,
past_seen_tokens + inputs_embeds.shape[1],
device=inputs_embeds.device,
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds)
# embed positions
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = (
next_decoder_cache.to_legacy_cache()
if isinstance(next_decoder_cache, Cache)
else next_decoder_cache
)
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _update_causal_mask(self, attention_mask, input_tensor):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
batch_size, seq_length = input_tensor.shape[:2]
dtype = input_tensor.dtype
device = input_tensor.device
# support going beyond cached `max_position_embedding`
if seq_length > self.causal_mask.shape[-1]:
causal_mask = torch.full(
(2 * self.causal_mask.shape[-1], 2 * self.causal_mask.shape[-1]),
fill_value=1,
)
self.register_buffer(
"causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False
)
# We use the current dtype to avoid any overflows
min_dtype = torch.finfo(dtype).min
causal_mask = (
self.causal_mask[None, None, :, :].repeat(batch_size, 1, 1, 1).to(dtype)
* min_dtype
)
causal_mask = causal_mask.to(dtype=dtype, device=device)
if attention_mask is not None and attention_mask.dim() == 2:
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[
:, None, None, :
].eq(0.0)
causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(
padding_mask, min_dtype
)
if self.config._attn_implementation == "sdpa" and attention_mask is not None:
# For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400).
is_tracing = (
torch.jit.is_tracing()
or isinstance(input_tensor, torch.fx.Proxy)
or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
)
if not is_tracing and torch.any(attention_mask != 1):
# Attend to all tokens in masked rows from the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = causal_mask.mul(
~torch.all(causal_mask == min_dtype, dim=-1, keepdim=True)
).to(dtype)
return causal_mask
class OpenELMForCausalLM(OpenELMPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: OpenELMConfig):
super().__init__(config)
self.transformer = OpenELMModel(config)
self.vocab_size = config.vocab_size
if config.share_input_output_layers:
self.lm_head = None
else:
self.lm_head = nn.Linear(config.model_dim, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.transformer.token_embeddings
def set_input_embeddings(self, value):
self.transformer.token_embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.transformer = decoder
def get_decoder(self):
return self.transformer
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
if self.lm_head is None:
# shared
logits = F.linear(
hidden_states, weight=self.transformer.token_embeddings.weight
)
else:
logits = self.lm_head(hidden_states)
logits = logits[:, : self.config.vocab_size]
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
**kwargs,
):
past_length = 0
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
max_cache_length = past_key_values.get_max_length()
else:
cache_length = past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if (
attention_mask is not None
and attention_mask.shape[1] > input_ids.shape[1]
):
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
if self.generation_config.cache_implementation == "static":
# generation with static cache
cache_position = kwargs.get("cache_position", None)
if cache_position is None:
past_length = 0
else:
past_length = cache_position[-1] + 1
input_ids = input_ids[:, past_length:]
position_ids = position_ids[:, past_length:]
# we should only keep a `cache_position` in generate, and do +=1.
# same goes for position ids. Could also help with continued generation.
cache_position = torch.arange(
past_length,
past_length + position_ids.shape[-1],
device=position_ids.device,
)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
# We could use `next_tokens` directly instead.
model_inputs = {"input_ids": input_ids.contiguous()}
model_inputs.update(
{
"position_ids": position_ids.contiguous(),
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(
past_state.index_select(0, beam_idx.to(past_state.device))
for past_state in layer_past
),
)
return reordered_past
ACT_TYPE = {
'relu': nn.ReLU,
'gelu': nn.GELU
}
class Connector(nn.Module):
def __init__(self, config=None):
super().__init__()
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', config.connector_type)
act_type = config.connector_type.split('_')[-1]
mlp_depth = int(mlp_gelu_match.group(1))
modules = [nn.Linear(config.vision_hidden_size, config.hidden_size)]
for _ in range(1, mlp_depth):
modules.append(ACT_TYPE[act_type]())
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
self._connector = nn.Sequential(*modules)
def forward(self, x):
return self._connector(x)
class VisionTower(nn.Module):
def __init__(self, cfg, model_name_or_path = 'clip'):
super().__init__()
if 'clip' in model_name_or_path:
self._vision_tower = CLIPVisionModel(cfg)
self._image_processor = CLIPImageProcessor.from_pretrained(cfg.model_name_or_path)
else:
self._vision_tower = SiglipVisionModel(cfg)
self._image_processor = SiglipImageProcessor.from_pretrained(cfg.model_name_or_path)
self.config = cfg
def forward(self, x, **kwargs):
image_features = self._vision_tower(x, output_hidden_states=True)
image_features = image_features.hidden_states[kwargs.get('vision_feature_layer', -2)]
if kwargs.get('vision_feature_select_strategy', 'patch') == 'patch':
image_features = image_features[:, 1:]
elif kwargs.get('vision_feature_select_strategy', 'patch') == 'cls_patch':
image_features = image_features
else:
raise ValueError(f"Unexpected select feature: {kwargs.get('vision_feature_select_strategy')}")
return image_features
@property
def vision_tower(self):
return self._vision_tower
@vision_tower.setter
def vision_tower(self, vision_tower):
self._vision_tower = vision_tower
def get_value_from_kwargs(kwargs, name):
if name in kwargs:
return kwargs.pop(name)
else:
return None
class TinyLlavaPreTrainedModel(PreTrainedModel):
config_class = TinyLlavaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["LlavaVisionAttention"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
def _init_weights(self, module):
std = (
self.config.initializer_range
if hasattr(self.config, "initializer_range")
else self.config.text_config.initializer_range
)
if hasattr(module, "class_embedding"):
module.class_embedding.data.normal_(mean=0.0, std=std)
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def _supports_sdpa(self):
return self.language_model._supports_sdpa
class TinyLlavaForConditionalGeneration(TinyLlavaPreTrainedModel):
def __init__(self, config: TinyLlavaConfig):
super().__init__(config)
self.language_model = OpenELMForCausalLM(config.text_config)
self.vision_tower = VisionTower(config.vision_config, config.vision_model_name_or_path)
self.connector = Connector(config)
self.post_init()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
def get_decoder(self):
return self.language_model.get_decoder()
def tie_weights(self):
return self.language_model.tie_weights()
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
# update vocab size
self.config.text_config.vocab_size = model_embeds.num_embeddings
self.config.vocab_size = model_embeds.num_embeddings
self.vocab_size = model_embeds.num_embeddings
return model_embeds
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
image_sizes: Optional[List[List[int]]] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
use_cache = use_cache if use_cache is not None else self.config.use_cache
if inputs_embeds is None:
(
input_ids,
position_ids,
attention_mask,
past_key_values,
inputs_embeds,
labels
) = self.prepare_inputs_labels_for_multimodal(
input_ids,
position_ids,
attention_mask,
past_key_values,
labels,
images,
image_sizes
)
return self.language_model.forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
images: Optional[torch.Tensor] = None,
image_sizes: Optional[torch.Tensor] = None,
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
position_ids = kwargs.pop("position_ids", None)
attention_mask = kwargs.pop("attention_mask", None)
if "inputs_embeds" in kwargs:
raise NotImplementedError("`inputs_embeds` is not supported")
if images is not None:
(
inputs,
position_ids,
attention_mask,
_,
inputs_embeds,
_
) = self.prepare_inputs_labels_for_multimodal(
inputs,
position_ids,
attention_mask,
None,
None,
images,
image_sizes=image_sizes
)
else:
inputs_embeds = self.language_model.get_input_embeddings()(inputs)
return self.language_model.generate(
position_ids=position_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
**kwargs
)
def encode_images(self, images):
kwargs = {}
kwargs['vision_feature_layer'] = self.config.vision_feature_layer
kwargs['vision_feature_select_strategy'] = self.config.vision_feature_select_strategy
images = images.to(device=self.device, dtype=self.dtype)
image_features = self.vision_tower(images, **kwargs)
image_features = self.connector(image_features)
return image_features
def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
inputs_embeds=None, **kwargs):
images = kwargs.pop("images", None)
image_sizes = kwargs.pop("image_sizes", None)
inputs = self.language_model.prepare_inputs_for_generation(
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
)
if images is not None:
inputs['images'] = images
if image_sizes is not None:
inputs['image_sizes'] = image_sizes
return inputs
def prepare_inputs_labels_for_multimodal(
self, input_ids, position_ids, attention_mask, past_key_values, labels,
images, image_sizes=None
):
vision_tower = self.vision_tower
if vision_tower is None or images is None or input_ids.shape[1] == 1:
return input_ids, position_ids, attention_mask, past_key_values, None, labels
image_features = self.encode_images(images)
# TODO: image start / end is not implemented here to support pretraining.
if getattr(self.config, 'tune_mm_mlp_adapter', False):
raise NotImplementedError
# Let's just add dummy tensors if they do not exist,
# it is a headache to deal with None all the time.
# But it is not ideal, and if you have a better idea,
# please open an issue / submit a PR, thanks.
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- FIXME
_input_ids = input_ids
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
new_input_embeds = []
new_labels = []
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if num_images == 0:
cur_image_features = image_features[cur_image_idx]
cur_input_embeds_1 = self.language_model.get_input_embeddings()(cur_input_ids)
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
cur_image_idx += 1
continue
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
cur_input_ids_noim = []
cur_labels = labels[batch_idx]
cur_labels_noim = []
for i in range(len(image_token_indices) - 1):
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
split_sizes = [x.shape[0] for x in cur_labels_noim]
cur_input_embeds = self.language_model.get_input_embeddings()(torch.cat(cur_input_ids_noim))
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
cur_new_input_embeds = []
cur_new_labels = []
for i in range(num_images + 1):
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
if i < num_images:
cur_image_features = image_features[cur_image_idx]
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
# Truncate sequences to max length as image embeddings can make the sequence longer
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
if tokenizer_model_max_length is not None:
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
cur_len = cur_new_embed.shape[0]
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
new_input_embeds_padded.append(torch.cat((
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
cur_new_embed
), dim=0))
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
else:
new_input_embeds_padded.append(torch.cat((
cur_new_embed,
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
), dim=0))
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
def chat(
self,
prompt: str,
tokenizer = None,
image: str = None,
max_new_tokens: int = 512,
num_beams = 1,
top_p=None,
temperature=0
):
image_processor = self.vision_tower._image_processor
if image is not None:
prompt = DEFAULT_IMAGE_TOKEN + '\n' + prompt
conv = conv_phi_v0.copy()
conv.append_message(conv.roles[0], prompt)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
if image is not None:
image = load_image(image)
image_tensor = process_images(image, image_processor, self.config).to(self.device)
input_ids = (
tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
.unsqueeze(0).to(self.device)
)
# Generate
stime = time.time()
with torch.inference_mode():
output_ids = self.generate(
input_ids,
images=image_tensor,
do_sample=True if temperature > 0 else False,
temperature=temperature,
top_p=top_p,
num_beams=num_beams,
pad_token_id=tokenizer.pad_token_id,
max_new_tokens=max_new_tokens,
use_cache=True,
# stopping_criteria=[stopping_criteria],
)
# print('inference over')
generation_time = time.time() - stime
outputs = tokenizer.batch_decode(
output_ids, skip_special_tokens=True
)[0]
outputs = outputs.strip()
return outputs, generation_time
AutoConfig.register("tinyllava", TinyLlavaConfig)
AutoModelForCausalLM.register(TinyLlavaConfig, TinyLlavaForConditionalGeneration) |