Upload folder using huggingface_hub
#1
by
sharpenb
- opened
- README.md +83 -0
- config.json +46 -0
- generation_config.json +6 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +330 -0
- plots.png +0 -0
- smash_config.json +27 -0
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: pruna-engine
|
3 |
+
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
|
4 |
+
metrics:
|
5 |
+
- memory_disk
|
6 |
+
- memory_inference
|
7 |
+
- inference_latency
|
8 |
+
- inference_throughput
|
9 |
+
- inference_CO2_emissions
|
10 |
+
- inference_energy_consumption
|
11 |
+
---
|
12 |
+
<!-- header start -->
|
13 |
+
<!-- 200823 -->
|
14 |
+
<div style="width: auto; margin-left: auto; margin-right: auto">
|
15 |
+
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
|
16 |
+
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
17 |
+
</a>
|
18 |
+
</div>
|
19 |
+
<!-- header end -->
|
20 |
+
|
21 |
+
[![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI)
|
22 |
+
[![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI)
|
23 |
+
[![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
|
24 |
+
[![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/CP4VSgck)
|
25 |
+
|
26 |
+
# Simply make AI models cheaper, smaller, faster, and greener!
|
27 |
+
|
28 |
+
- Give a thumbs up if you like this model!
|
29 |
+
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
|
30 |
+
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
31 |
+
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
|
32 |
+
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
|
33 |
+
|
34 |
+
## Results
|
35 |
+
|
36 |
+
![image info](./plots.png)
|
37 |
+
|
38 |
+
**Frequently Asked Questions**
|
39 |
+
- ***How does the compression work?*** The model is compressed with llm-int8.
|
40 |
+
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
|
41 |
+
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
|
42 |
+
- ***What is the model format?*** We use safetensors.
|
43 |
+
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
|
44 |
+
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
|
45 |
+
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
46 |
+
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
|
47 |
+
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
|
48 |
+
|
49 |
+
## Setup
|
50 |
+
|
51 |
+
You can run the smashed model with these steps:
|
52 |
+
|
53 |
+
0. Check requirements from the original repo ybelkada/falcon-7b-sharded-bf16 installed. In particular, check python, cuda, and transformers versions.
|
54 |
+
1. Make sure that you have installed quantization related packages.
|
55 |
+
```bash
|
56 |
+
pip install transformers accelerate bitsandbytes>0.37.0
|
57 |
+
```
|
58 |
+
2. Load & run the model.
|
59 |
+
```python
|
60 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
61 |
+
|
62 |
+
model = AutoModelForCausalLM.from_pretrained("PrunaAI/ybelkada-falcon-7b-sharded-bf16-bnb-8bit-smashed",
|
63 |
+
trust_remote_code=True)
|
64 |
+
tokenizer = AutoTokenizer.from_pretrained("ybelkada/falcon-7b-sharded-bf16")
|
65 |
+
|
66 |
+
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
|
67 |
+
|
68 |
+
outputs = model.generate(input_ids, max_new_tokens=216)
|
69 |
+
tokenizer.decode(outputs[0])
|
70 |
+
```
|
71 |
+
|
72 |
+
## Configurations
|
73 |
+
|
74 |
+
The configuration info are in `smash_config.json`.
|
75 |
+
|
76 |
+
## Credits & License
|
77 |
+
|
78 |
+
The license of the smashed model follows the license of the original model. Please check the license of the original model ybelkada/falcon-7b-sharded-bf16 before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
|
79 |
+
|
80 |
+
## Want to compress other models?
|
81 |
+
|
82 |
+
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
|
83 |
+
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/tmp/tmp4qhbr9ev",
|
3 |
+
"alibi": false,
|
4 |
+
"apply_residual_connection_post_layernorm": false,
|
5 |
+
"architectures": [
|
6 |
+
"FalconForCausalLM"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"bias": false,
|
10 |
+
"bos_token_id": 11,
|
11 |
+
"eos_token_id": 11,
|
12 |
+
"hidden_dropout": 0.0,
|
13 |
+
"hidden_size": 4544,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"layer_norm_epsilon": 1e-05,
|
16 |
+
"max_position_embeddings": 2048,
|
17 |
+
"model_type": "falcon",
|
18 |
+
"multi_query": true,
|
19 |
+
"n_head": 71,
|
20 |
+
"n_layer": 32,
|
21 |
+
"new_decoder_architecture": false,
|
22 |
+
"num_attention_heads": 71,
|
23 |
+
"num_hidden_layers": 32,
|
24 |
+
"num_kv_heads": 71,
|
25 |
+
"parallel_attn": true,
|
26 |
+
"quantization_config": {
|
27 |
+
"bnb_4bit_compute_dtype": "bfloat16",
|
28 |
+
"bnb_4bit_quant_type": "fp4",
|
29 |
+
"bnb_4bit_use_double_quant": true,
|
30 |
+
"llm_int8_enable_fp32_cpu_offload": false,
|
31 |
+
"llm_int8_has_fp16_weight": false,
|
32 |
+
"llm_int8_skip_modules": [
|
33 |
+
"lm_head"
|
34 |
+
],
|
35 |
+
"llm_int8_threshold": 6.0,
|
36 |
+
"load_in_4bit": false,
|
37 |
+
"load_in_8bit": true,
|
38 |
+
"quant_method": "bitsandbytes"
|
39 |
+
},
|
40 |
+
"rope_scaling": null,
|
41 |
+
"rope_theta": 10000.0,
|
42 |
+
"torch_dtype": "float16",
|
43 |
+
"transformers_version": "4.37.1",
|
44 |
+
"use_cache": true,
|
45 |
+
"vocab_size": 65024
|
46 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.37.1"
|
6 |
+
}
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6eab2b9a9857814efd5df05a1c862805e1bf4a8df477af02576f0b34cf8c2c53
|
3 |
+
size 4984221952
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40320fc752b97e007b53284aac41dbfb043dc8af371439097fc6e08fa02dcd1e
|
3 |
+
size 2237391976
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 7221577472
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"transformer.h.0.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
7 |
+
"transformer.h.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"transformer.h.0.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
9 |
+
"transformer.h.0.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"transformer.h.0.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
11 |
+
"transformer.h.0.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"transformer.h.0.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
13 |
+
"transformer.h.0.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"transformer.h.0.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
15 |
+
"transformer.h.0.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"transformer.h.1.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
17 |
+
"transformer.h.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"transformer.h.1.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
19 |
+
"transformer.h.1.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"transformer.h.1.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
21 |
+
"transformer.h.1.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"transformer.h.1.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
23 |
+
"transformer.h.1.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"transformer.h.1.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
25 |
+
"transformer.h.1.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"transformer.h.10.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
27 |
+
"transformer.h.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"transformer.h.10.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
29 |
+
"transformer.h.10.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"transformer.h.10.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
31 |
+
"transformer.h.10.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"transformer.h.10.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
33 |
+
"transformer.h.10.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"transformer.h.10.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
35 |
+
"transformer.h.10.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"transformer.h.11.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
37 |
+
"transformer.h.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"transformer.h.11.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
39 |
+
"transformer.h.11.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"transformer.h.11.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
41 |
+
"transformer.h.11.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"transformer.h.11.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
43 |
+
"transformer.h.11.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"transformer.h.11.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
45 |
+
"transformer.h.11.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"transformer.h.12.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
47 |
+
"transformer.h.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"transformer.h.12.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
49 |
+
"transformer.h.12.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"transformer.h.12.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
51 |
+
"transformer.h.12.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"transformer.h.12.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
53 |
+
"transformer.h.12.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"transformer.h.12.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
55 |
+
"transformer.h.12.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"transformer.h.13.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
57 |
+
"transformer.h.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"transformer.h.13.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
59 |
+
"transformer.h.13.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"transformer.h.13.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
61 |
+
"transformer.h.13.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"transformer.h.13.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
63 |
+
"transformer.h.13.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"transformer.h.13.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
65 |
+
"transformer.h.13.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"transformer.h.14.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
67 |
+
"transformer.h.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"transformer.h.14.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
69 |
+
"transformer.h.14.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"transformer.h.14.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
71 |
+
"transformer.h.14.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"transformer.h.14.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
73 |
+
"transformer.h.14.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"transformer.h.14.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
75 |
+
"transformer.h.14.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"transformer.h.15.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
77 |
+
"transformer.h.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"transformer.h.15.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
79 |
+
"transformer.h.15.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"transformer.h.15.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
81 |
+
"transformer.h.15.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"transformer.h.15.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
83 |
+
"transformer.h.15.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"transformer.h.15.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
85 |
+
"transformer.h.15.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"transformer.h.16.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
87 |
+
"transformer.h.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"transformer.h.16.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
89 |
+
"transformer.h.16.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"transformer.h.16.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
91 |
+
"transformer.h.16.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"transformer.h.16.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
93 |
+
"transformer.h.16.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"transformer.h.16.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
95 |
+
"transformer.h.16.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"transformer.h.17.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
97 |
+
"transformer.h.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"transformer.h.17.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
99 |
+
"transformer.h.17.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"transformer.h.17.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
101 |
+
"transformer.h.17.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"transformer.h.17.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
103 |
+
"transformer.h.17.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"transformer.h.17.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
105 |
+
"transformer.h.17.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"transformer.h.18.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
107 |
+
"transformer.h.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"transformer.h.18.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
109 |
+
"transformer.h.18.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"transformer.h.18.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
111 |
+
"transformer.h.18.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"transformer.h.18.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
113 |
+
"transformer.h.18.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"transformer.h.18.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
115 |
+
"transformer.h.18.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"transformer.h.19.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
117 |
+
"transformer.h.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"transformer.h.19.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
119 |
+
"transformer.h.19.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"transformer.h.19.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
121 |
+
"transformer.h.19.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"transformer.h.19.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
123 |
+
"transformer.h.19.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"transformer.h.19.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
125 |
+
"transformer.h.19.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"transformer.h.2.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
127 |
+
"transformer.h.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"transformer.h.2.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
129 |
+
"transformer.h.2.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"transformer.h.2.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
131 |
+
"transformer.h.2.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"transformer.h.2.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
133 |
+
"transformer.h.2.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"transformer.h.2.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
135 |
+
"transformer.h.2.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"transformer.h.20.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
137 |
+
"transformer.h.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"transformer.h.20.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
139 |
+
"transformer.h.20.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"transformer.h.20.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
141 |
+
"transformer.h.20.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"transformer.h.20.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
143 |
+
"transformer.h.20.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"transformer.h.20.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
145 |
+
"transformer.h.20.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"transformer.h.21.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
147 |
+
"transformer.h.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
148 |
+
"transformer.h.21.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
|
149 |
+
"transformer.h.21.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
|
150 |
+
"transformer.h.21.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
|
151 |
+
"transformer.h.21.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
|
152 |
+
"transformer.h.21.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
153 |
+
"transformer.h.21.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"transformer.h.21.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
155 |
+
"transformer.h.21.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"transformer.h.22.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
157 |
+
"transformer.h.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
158 |
+
"transformer.h.22.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
|
159 |
+
"transformer.h.22.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
|
160 |
+
"transformer.h.22.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
|
161 |
+
"transformer.h.22.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
|
162 |
+
"transformer.h.22.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
|
163 |
+
"transformer.h.22.self_attention.dense.weight": "model-00002-of-00002.safetensors",
|
164 |
+
"transformer.h.22.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
|
165 |
+
"transformer.h.22.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
|
166 |
+
"transformer.h.23.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
167 |
+
"transformer.h.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
168 |
+
"transformer.h.23.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
|
169 |
+
"transformer.h.23.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
|
170 |
+
"transformer.h.23.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
|
171 |
+
"transformer.h.23.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
|
172 |
+
"transformer.h.23.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
|
173 |
+
"transformer.h.23.self_attention.dense.weight": "model-00002-of-00002.safetensors",
|
174 |
+
"transformer.h.23.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
|
175 |
+
"transformer.h.23.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
|
176 |
+
"transformer.h.24.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
177 |
+
"transformer.h.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
178 |
+
"transformer.h.24.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
|
179 |
+
"transformer.h.24.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
|
180 |
+
"transformer.h.24.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
|
181 |
+
"transformer.h.24.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
|
182 |
+
"transformer.h.24.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
|
183 |
+
"transformer.h.24.self_attention.dense.weight": "model-00002-of-00002.safetensors",
|
184 |
+
"transformer.h.24.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
|
185 |
+
"transformer.h.24.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
|
186 |
+
"transformer.h.25.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
187 |
+
"transformer.h.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
188 |
+
"transformer.h.25.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
|
189 |
+
"transformer.h.25.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
|
190 |
+
"transformer.h.25.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
|
191 |
+
"transformer.h.25.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
|
192 |
+
"transformer.h.25.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
|
193 |
+
"transformer.h.25.self_attention.dense.weight": "model-00002-of-00002.safetensors",
|
194 |
+
"transformer.h.25.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
|
195 |
+
"transformer.h.25.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
|
196 |
+
"transformer.h.26.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
197 |
+
"transformer.h.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
198 |
+
"transformer.h.26.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
|
199 |
+
"transformer.h.26.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
|
200 |
+
"transformer.h.26.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
|
201 |
+
"transformer.h.26.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
|
202 |
+
"transformer.h.26.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
|
203 |
+
"transformer.h.26.self_attention.dense.weight": "model-00002-of-00002.safetensors",
|
204 |
+
"transformer.h.26.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
|
205 |
+
"transformer.h.26.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
|
206 |
+
"transformer.h.27.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
207 |
+
"transformer.h.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
208 |
+
"transformer.h.27.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
|
209 |
+
"transformer.h.27.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
|
210 |
+
"transformer.h.27.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
|
211 |
+
"transformer.h.27.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
|
212 |
+
"transformer.h.27.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
|
213 |
+
"transformer.h.27.self_attention.dense.weight": "model-00002-of-00002.safetensors",
|
214 |
+
"transformer.h.27.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
|
215 |
+
"transformer.h.27.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
|
216 |
+
"transformer.h.28.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
217 |
+
"transformer.h.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
218 |
+
"transformer.h.28.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
|
219 |
+
"transformer.h.28.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
|
220 |
+
"transformer.h.28.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
|
221 |
+
"transformer.h.28.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
|
222 |
+
"transformer.h.28.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
|
223 |
+
"transformer.h.28.self_attention.dense.weight": "model-00002-of-00002.safetensors",
|
224 |
+
"transformer.h.28.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
|
225 |
+
"transformer.h.28.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
|
226 |
+
"transformer.h.29.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
227 |
+
"transformer.h.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
228 |
+
"transformer.h.29.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
|
229 |
+
"transformer.h.29.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
|
230 |
+
"transformer.h.29.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
|
231 |
+
"transformer.h.29.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
|
232 |
+
"transformer.h.29.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
|
233 |
+
"transformer.h.29.self_attention.dense.weight": "model-00002-of-00002.safetensors",
|
234 |
+
"transformer.h.29.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
|
235 |
+
"transformer.h.29.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
|
236 |
+
"transformer.h.3.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
237 |
+
"transformer.h.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"transformer.h.3.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
239 |
+
"transformer.h.3.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"transformer.h.3.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
241 |
+
"transformer.h.3.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
242 |
+
"transformer.h.3.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
243 |
+
"transformer.h.3.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"transformer.h.3.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
245 |
+
"transformer.h.3.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"transformer.h.30.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
247 |
+
"transformer.h.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
248 |
+
"transformer.h.30.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
|
249 |
+
"transformer.h.30.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
|
250 |
+
"transformer.h.30.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
|
251 |
+
"transformer.h.30.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
|
252 |
+
"transformer.h.30.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
|
253 |
+
"transformer.h.30.self_attention.dense.weight": "model-00002-of-00002.safetensors",
|
254 |
+
"transformer.h.30.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
|
255 |
+
"transformer.h.30.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
|
256 |
+
"transformer.h.31.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
257 |
+
"transformer.h.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
258 |
+
"transformer.h.31.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
|
259 |
+
"transformer.h.31.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
|
260 |
+
"transformer.h.31.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
|
261 |
+
"transformer.h.31.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
|
262 |
+
"transformer.h.31.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
|
263 |
+
"transformer.h.31.self_attention.dense.weight": "model-00002-of-00002.safetensors",
|
264 |
+
"transformer.h.31.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
|
265 |
+
"transformer.h.31.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
|
266 |
+
"transformer.h.4.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
267 |
+
"transformer.h.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
268 |
+
"transformer.h.4.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
269 |
+
"transformer.h.4.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"transformer.h.4.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
271 |
+
"transformer.h.4.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"transformer.h.4.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
273 |
+
"transformer.h.4.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
274 |
+
"transformer.h.4.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
275 |
+
"transformer.h.4.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
276 |
+
"transformer.h.5.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
277 |
+
"transformer.h.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
278 |
+
"transformer.h.5.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
279 |
+
"transformer.h.5.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
280 |
+
"transformer.h.5.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
281 |
+
"transformer.h.5.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
282 |
+
"transformer.h.5.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
283 |
+
"transformer.h.5.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
284 |
+
"transformer.h.5.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
285 |
+
"transformer.h.5.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"transformer.h.6.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
287 |
+
"transformer.h.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"transformer.h.6.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
289 |
+
"transformer.h.6.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
290 |
+
"transformer.h.6.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
291 |
+
"transformer.h.6.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
292 |
+
"transformer.h.6.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
293 |
+
"transformer.h.6.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
294 |
+
"transformer.h.6.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
295 |
+
"transformer.h.6.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
296 |
+
"transformer.h.7.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
297 |
+
"transformer.h.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
298 |
+
"transformer.h.7.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
299 |
+
"transformer.h.7.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
300 |
+
"transformer.h.7.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
301 |
+
"transformer.h.7.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
302 |
+
"transformer.h.7.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
303 |
+
"transformer.h.7.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
304 |
+
"transformer.h.7.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
305 |
+
"transformer.h.7.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
306 |
+
"transformer.h.8.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
307 |
+
"transformer.h.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
308 |
+
"transformer.h.8.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
309 |
+
"transformer.h.8.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
310 |
+
"transformer.h.8.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
311 |
+
"transformer.h.8.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
312 |
+
"transformer.h.8.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
313 |
+
"transformer.h.8.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
314 |
+
"transformer.h.8.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
315 |
+
"transformer.h.8.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
316 |
+
"transformer.h.9.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
317 |
+
"transformer.h.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
318 |
+
"transformer.h.9.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
319 |
+
"transformer.h.9.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
320 |
+
"transformer.h.9.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
321 |
+
"transformer.h.9.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
322 |
+
"transformer.h.9.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
323 |
+
"transformer.h.9.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
324 |
+
"transformer.h.9.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
325 |
+
"transformer.h.9.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
326 |
+
"transformer.ln_f.bias": "model-00002-of-00002.safetensors",
|
327 |
+
"transformer.ln_f.weight": "model-00002-of-00002.safetensors",
|
328 |
+
"transformer.word_embeddings.weight": "model-00001-of-00002.safetensors"
|
329 |
+
}
|
330 |
+
}
|
plots.png
ADDED
smash_config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"api_key": null,
|
3 |
+
"verify_url": "http://johnrachwan.pythonanywhere.com",
|
4 |
+
"smash_config": {
|
5 |
+
"pruners": "None",
|
6 |
+
"factorizers": "None",
|
7 |
+
"quantizers": "['llm-int8']",
|
8 |
+
"compilers": "None",
|
9 |
+
"task": "text_text_generation",
|
10 |
+
"device": "cuda",
|
11 |
+
"cache_dir": "/ceph/hdd/staff/charpent/.cache/modelsgin8pykn",
|
12 |
+
"batch_size": 1,
|
13 |
+
"model_name": "ybelkada/falcon-7b-sharded-bf16",
|
14 |
+
"pruning_ratio": 0.0,
|
15 |
+
"n_quantization_bits": 8,
|
16 |
+
"output_deviation": 0.005,
|
17 |
+
"max_batch_size": 1,
|
18 |
+
"qtype_weight": "torch.qint8",
|
19 |
+
"qtype_activation": "torch.quint8",
|
20 |
+
"qobserver": "<class 'torch.ao.quantization.observer.MinMaxObserver'>",
|
21 |
+
"qscheme": "torch.per_tensor_symmetric",
|
22 |
+
"qconfig": "x86",
|
23 |
+
"group_size": 128,
|
24 |
+
"damp_percent": 0.1,
|
25 |
+
"save_load_fn": "bitsandbytes"
|
26 |
+
}
|
27 |
+
}
|