segformer-b0-finetuned-oldapp-dec-4

This model is a fine-tuned version of nvidia/mit-b0 on the PushkarA07/oldapptiles5 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0403
  • Mean Iou: 0.4995
  • Mean Accuracy: 0.5
  • Overall Accuracy: 0.9990
  • Accuracy Abnormality: 0.0
  • Iou Abnormality: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Abnormality Iou Abnormality
0.2898 0.7143 10 0.2757 0.4992 0.4997 0.9984 0.0 0.0
0.2605 1.4286 20 0.2029 0.4995 0.5 0.9990 0.0 0.0
0.2573 2.1429 30 0.1829 0.4995 0.5 0.9990 0.0 0.0
0.4388 2.8571 40 0.1301 0.4995 0.5 0.9990 0.0 0.0
0.1893 3.5714 50 0.1529 0.4995 0.5 0.9990 0.0 0.0
0.171 4.2857 60 0.1322 0.4995 0.5 0.9990 0.0 0.0
0.1502 5.0 70 0.1239 0.4995 0.5 0.9990 0.0 0.0
0.1267 5.7143 80 0.1285 0.4995 0.5 0.9990 0.0 0.0
0.1421 6.4286 90 0.0891 0.4995 0.5 0.9990 0.0 0.0
0.1271 7.1429 100 0.0684 0.4995 0.5 0.9990 0.0 0.0
0.1206 7.8571 110 0.0718 0.4995 0.5 0.9990 0.0 0.0
0.0802 8.5714 120 0.0802 0.4995 0.5 0.9990 0.0 0.0
0.0765 9.2857 130 0.0591 0.4995 0.5 0.9990 0.0 0.0
0.1025 10.0 140 0.0541 0.4995 0.5 0.9990 0.0 0.0
0.0711 10.7143 150 0.0572 0.4995 0.5 0.9990 0.0 0.0
0.0621 11.4286 160 0.0488 0.4995 0.5 0.9990 0.0 0.0
0.0611 12.1429 170 0.0446 0.4995 0.5 0.9990 0.0 0.0
0.0665 12.8571 180 0.0383 0.4995 0.5 0.9990 0.0 0.0
0.0625 13.5714 190 0.0492 0.4995 0.5 0.9990 0.0 0.0
0.0473 14.2857 200 0.0454 0.4995 0.5 0.9990 0.0 0.0
0.0379 15.0 210 0.0384 0.4995 0.5 0.9990 0.0 0.0
0.0597 15.7143 220 0.0423 0.4995 0.5 0.9990 0.0 0.0
0.0436 16.4286 230 0.0474 0.4995 0.5 0.9990 0.0 0.0
0.0591 17.1429 240 0.0424 0.4995 0.5 0.9990 0.0 0.0
0.0337 17.8571 250 0.0359 0.4995 0.5 0.9990 0.0 0.0
0.0455 18.5714 260 0.0394 0.4995 0.5 0.9990 0.0 0.0
0.0322 19.2857 270 0.0321 0.4995 0.5 0.9990 0.0 0.0
0.0339 20.0 280 0.0440 0.4995 0.5 0.9990 0.0 0.0
0.0336 20.7143 290 0.0459 0.4995 0.5 0.9990 0.0 0.0
0.0357 21.4286 300 0.0324 0.4995 0.5 0.9990 0.0 0.0
0.0286 22.1429 310 0.0264 0.4995 0.5 0.9990 0.0 0.0
0.0301 22.8571 320 0.0166 0.4995 0.5 0.9990 0.0 0.0
0.0252 23.5714 330 0.0229 0.4995 0.5 0.9990 0.0 0.0
0.0296 24.2857 340 0.0298 0.4995 0.5 0.9990 0.0 0.0
0.033 25.0 350 0.0389 0.4995 0.5 0.9990 0.0 0.0
0.0279 25.7143 360 0.0346 0.4995 0.5 0.9990 0.0 0.0
0.0266 26.4286 370 0.0425 0.4995 0.5 0.9990 0.0 0.0
0.0278 27.1429 380 0.0395 0.4995 0.5 0.9990 0.0 0.0
0.0458 27.8571 390 0.0228 0.4995 0.5 0.9990 0.0 0.0
0.0289 28.5714 400 0.0183 0.4995 0.5 0.9990 0.0 0.0
0.0261 29.2857 410 0.0300 0.4995 0.5 0.9990 0.0 0.0
0.031 30.0 420 0.0295 0.4995 0.5 0.9990 0.0 0.0
0.0342 30.7143 430 0.0457 0.4995 0.5 0.9990 0.0 0.0
0.0271 31.4286 440 0.0349 0.4995 0.5 0.9990 0.0 0.0
0.0198 32.1429 450 0.0407 0.4995 0.5 0.9990 0.0 0.0
0.0231 32.8571 460 0.0443 0.4995 0.5 0.9990 0.0 0.0
0.0392 33.5714 470 0.0398 0.4995 0.5 0.9990 0.0 0.0
0.0166 34.2857 480 0.0206 0.4995 0.5 0.9990 0.0 0.0
0.0215 35.0 490 0.0302 0.4995 0.5 0.9990 0.0 0.0
0.0983 35.7143 500 0.0117 0.4995 0.5 0.9990 0.0 0.0
0.0162 36.4286 510 0.0237 0.4995 0.5 0.9990 0.0 0.0
0.0211 37.1429 520 0.0395 0.4995 0.5 0.9990 0.0 0.0
0.0228 37.8571 530 0.0526 0.4995 0.5 0.9990 0.0 0.0
0.0198 38.5714 540 0.0480 0.4995 0.5 0.9990 0.0 0.0
0.0192 39.2857 550 0.0479 0.4995 0.5 0.9990 0.0 0.0
0.0213 40.0 560 0.0390 0.4995 0.5 0.9990 0.0 0.0
0.0185 40.7143 570 0.0456 0.4995 0.5 0.9990 0.0 0.0
0.0179 41.4286 580 0.0337 0.4995 0.5 0.9990 0.0 0.0
0.0307 42.1429 590 0.0460 0.4995 0.5 0.9990 0.0 0.0
0.0199 42.8571 600 0.0443 0.4995 0.5 0.9990 0.0 0.0
0.0121 43.5714 610 0.0313 0.4995 0.5 0.9990 0.0 0.0
0.0184 44.2857 620 0.0435 0.4995 0.5 0.9990 0.0 0.0
0.0243 45.0 630 0.0440 0.4995 0.5 0.9990 0.0 0.0
0.02 45.7143 640 0.0457 0.4995 0.5 0.9990 0.0 0.0
0.0144 46.4286 650 0.0440 0.4995 0.5 0.9990 0.0 0.0
0.013 47.1429 660 0.0295 0.4995 0.5 0.9990 0.0 0.0
0.0156 47.8571 670 0.0429 0.4995 0.5 0.9990 0.0 0.0
0.0201 48.5714 680 0.0453 0.4995 0.5 0.9990 0.0 0.0
0.018 49.2857 690 0.0384 0.4995 0.5 0.9990 0.0 0.0
0.0118 50.0 700 0.0403 0.4995 0.5 0.9990 0.0 0.0

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
23
Safetensors
Model size
3.72M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for PushkarA07/segformer-b0-finetuned-oldapp-dec-4

Base model

nvidia/mit-b0
Finetuned
(335)
this model