segformer-b0-finetuned-oldapp-dec-4
This model is a fine-tuned version of nvidia/mit-b0 on the PushkarA07/oldapptiles5 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0403
- Mean Iou: 0.4995
- Mean Accuracy: 0.5
- Overall Accuracy: 0.9990
- Accuracy Abnormality: 0.0
- Iou Abnormality: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Abnormality | Iou Abnormality |
---|---|---|---|---|---|---|---|---|
0.2898 | 0.7143 | 10 | 0.2757 | 0.4992 | 0.4997 | 0.9984 | 0.0 | 0.0 |
0.2605 | 1.4286 | 20 | 0.2029 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.2573 | 2.1429 | 30 | 0.1829 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.4388 | 2.8571 | 40 | 0.1301 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.1893 | 3.5714 | 50 | 0.1529 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.171 | 4.2857 | 60 | 0.1322 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.1502 | 5.0 | 70 | 0.1239 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.1267 | 5.7143 | 80 | 0.1285 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.1421 | 6.4286 | 90 | 0.0891 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.1271 | 7.1429 | 100 | 0.0684 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.1206 | 7.8571 | 110 | 0.0718 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0802 | 8.5714 | 120 | 0.0802 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0765 | 9.2857 | 130 | 0.0591 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.1025 | 10.0 | 140 | 0.0541 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0711 | 10.7143 | 150 | 0.0572 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0621 | 11.4286 | 160 | 0.0488 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0611 | 12.1429 | 170 | 0.0446 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0665 | 12.8571 | 180 | 0.0383 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0625 | 13.5714 | 190 | 0.0492 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0473 | 14.2857 | 200 | 0.0454 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0379 | 15.0 | 210 | 0.0384 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0597 | 15.7143 | 220 | 0.0423 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0436 | 16.4286 | 230 | 0.0474 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0591 | 17.1429 | 240 | 0.0424 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0337 | 17.8571 | 250 | 0.0359 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0455 | 18.5714 | 260 | 0.0394 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0322 | 19.2857 | 270 | 0.0321 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0339 | 20.0 | 280 | 0.0440 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0336 | 20.7143 | 290 | 0.0459 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0357 | 21.4286 | 300 | 0.0324 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0286 | 22.1429 | 310 | 0.0264 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0301 | 22.8571 | 320 | 0.0166 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0252 | 23.5714 | 330 | 0.0229 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0296 | 24.2857 | 340 | 0.0298 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.033 | 25.0 | 350 | 0.0389 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0279 | 25.7143 | 360 | 0.0346 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0266 | 26.4286 | 370 | 0.0425 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0278 | 27.1429 | 380 | 0.0395 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0458 | 27.8571 | 390 | 0.0228 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0289 | 28.5714 | 400 | 0.0183 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0261 | 29.2857 | 410 | 0.0300 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.031 | 30.0 | 420 | 0.0295 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0342 | 30.7143 | 430 | 0.0457 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0271 | 31.4286 | 440 | 0.0349 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0198 | 32.1429 | 450 | 0.0407 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0231 | 32.8571 | 460 | 0.0443 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0392 | 33.5714 | 470 | 0.0398 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0166 | 34.2857 | 480 | 0.0206 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0215 | 35.0 | 490 | 0.0302 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0983 | 35.7143 | 500 | 0.0117 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0162 | 36.4286 | 510 | 0.0237 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0211 | 37.1429 | 520 | 0.0395 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0228 | 37.8571 | 530 | 0.0526 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0198 | 38.5714 | 540 | 0.0480 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0192 | 39.2857 | 550 | 0.0479 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0213 | 40.0 | 560 | 0.0390 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0185 | 40.7143 | 570 | 0.0456 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0179 | 41.4286 | 580 | 0.0337 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0307 | 42.1429 | 590 | 0.0460 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0199 | 42.8571 | 600 | 0.0443 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0121 | 43.5714 | 610 | 0.0313 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0184 | 44.2857 | 620 | 0.0435 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0243 | 45.0 | 630 | 0.0440 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.02 | 45.7143 | 640 | 0.0457 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0144 | 46.4286 | 650 | 0.0440 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.013 | 47.1429 | 660 | 0.0295 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0156 | 47.8571 | 670 | 0.0429 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0201 | 48.5714 | 680 | 0.0453 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.018 | 49.2857 | 690 | 0.0384 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
0.0118 | 50.0 | 700 | 0.0403 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 23
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for PushkarA07/segformer-b0-finetuned-oldapp-dec-4
Base model
nvidia/mit-b0