PushkarA07's picture
End of training
22bfd5c verified
metadata
library_name: transformers
license: other
base_model: nvidia/mit-b0
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: segformer-b0-finetuned-oldapp-oct-1
    results: []

segformer-b0-finetuned-oldapp-oct-1

This model is a fine-tuned version of nvidia/mit-b0 on the PushkarA07/oldapptiles5 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2630
  • Mean Iou: 0.4984
  • Mean Accuracy: 0.4989
  • Overall Accuracy: 0.9967
  • Accuracy Abnormality: 0.0
  • Iou Abnormality: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Abnormality Iou Abnormality
0.6912 0.7143 10 0.6575 0.4714 0.4784 0.9426 0.0133 0.0002
0.5802 1.4286 20 0.5878 0.4942 0.4947 0.9884 0.0 0.0
0.5498 2.1429 30 0.4770 0.4984 0.4989 0.9968 0.0 0.0
0.6084 2.8571 40 0.4125 0.4971 0.4976 0.9941 0.0 0.0
0.4675 3.5714 50 0.4355 0.4885 0.4992 0.9761 0.0213 0.0009
0.3863 4.2857 60 0.3699 0.4965 0.5005 0.9920 0.0081 0.0010
0.3954 5.0 70 0.3401 0.4983 0.4989 0.9967 0.0 0.0
0.3286 5.7143 80 0.3279 0.4983 0.4988 0.9967 0.0 0.0
0.3458 6.4286 90 0.2908 0.4974 0.4979 0.9948 0.0 0.0
0.3559 7.1429 100 0.2693 0.4989 0.4994 0.9978 0.0 0.0
0.3196 7.8571 110 0.2596 0.4977 0.4982 0.9954 0.0 0.0
0.3109 8.5714 120 0.2915 0.4958 0.4963 0.9916 0.0 0.0
0.2711 9.2857 130 0.2720 0.4991 0.4997 0.9983 0.0 0.0
0.3051 10.0 140 0.2630 0.4984 0.4989 0.9967 0.0 0.0

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3