Create configuration_xglm.py
Browse files- configuration_xglm.py +141 -0
configuration_xglm.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" XGLM model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
+
"facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/config.json",
|
25 |
+
# See all XGLM models at https://huggingface.co/models?filter=xglm
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
class XGLMConfig(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`XGLMModel`]. It is used to instantiate an XGLM
|
32 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
33 |
+
defaults will yield a similar configuration to that of the XGLM
|
34 |
+
[facebook/xglm-564M](https://huggingface.co/facebook/xglm-564M) architecture.
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
|
40 |
+
Args:
|
41 |
+
vocab_size (`int`, *optional*, defaults to 256008):
|
42 |
+
Vocabulary size of the XGLM model. Defines the number of different tokens that can be represented by the
|
43 |
+
`inputs_ids` passed when calling [`XGLMModel`] or [`FlaxXGLMModel`].
|
44 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
45 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
46 |
+
just in case (e.g., 512 or 1024 or 2048).
|
47 |
+
d_model (`int`, *optional*, defaults to 1024):
|
48 |
+
Dimension of the layers and the pooler layer.
|
49 |
+
ffn_dim (`int`, *optional*, defaults to 4096):
|
50 |
+
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
|
51 |
+
num_layers (`int`, *optional*, defaults to 24):
|
52 |
+
Number of hidden layers Transformer decoder.
|
53 |
+
attention_heads (`int`, *optional*, defaults to 16):
|
54 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
55 |
+
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
56 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
57 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
58 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
59 |
+
The dropout probability for all fully connected layers in the embeddings, dencoder, and pooler.
|
60 |
+
attention_dropout (`float`, *optional*, defaults to 0.1):
|
61 |
+
The dropout ratio for the attention probabilities.
|
62 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
63 |
+
The dropout ratio for activations inside the fully connected layer.
|
64 |
+
layerdrop (`float`, *optional*, defaults to 0.0):
|
65 |
+
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
66 |
+
for more details.
|
67 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
68 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
69 |
+
scale_embedding (`bool`, *optional*, defaults to `True`):
|
70 |
+
Scale embeddings by diving by sqrt(d_model).
|
71 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
72 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
73 |
+
|
74 |
+
Example:
|
75 |
+
|
76 |
+
```python
|
77 |
+
>>> from transformers import XGLMModel, XGLMConfig
|
78 |
+
|
79 |
+
>>> # Initializing a XGLM facebook/xglm-564M style configuration
|
80 |
+
>>> configuration = XGLMConfig()
|
81 |
+
|
82 |
+
>>> # Initializing a model from the facebook/xglm-564M style configuration
|
83 |
+
>>> model = XGLMModel(configuration)
|
84 |
+
|
85 |
+
>>> # Accessing the model configuration
|
86 |
+
>>> configuration = model.config
|
87 |
+
```"""
|
88 |
+
|
89 |
+
model_type = "xglm"
|
90 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
91 |
+
|
92 |
+
attribute_map = {
|
93 |
+
"num_attention_heads": "attention_heads",
|
94 |
+
"hidden_size": "d_model",
|
95 |
+
"num_hidden_layers": "num_layers",
|
96 |
+
}
|
97 |
+
|
98 |
+
def __init__(
|
99 |
+
self,
|
100 |
+
vocab_size=256008,
|
101 |
+
max_position_embeddings=2048,
|
102 |
+
d_model=1024,
|
103 |
+
ffn_dim=4096,
|
104 |
+
num_layers=24,
|
105 |
+
attention_heads=16,
|
106 |
+
activation_function="gelu",
|
107 |
+
dropout=0.1,
|
108 |
+
attention_dropout=0.1,
|
109 |
+
activation_dropout=0.0,
|
110 |
+
layerdrop=0.0,
|
111 |
+
init_std=0.02,
|
112 |
+
scale_embedding=True,
|
113 |
+
use_cache=True,
|
114 |
+
decoder_start_token_id=2,
|
115 |
+
pad_token_id=1,
|
116 |
+
bos_token_id=0,
|
117 |
+
eos_token_id=2,
|
118 |
+
**kwargs,
|
119 |
+
):
|
120 |
+
self.vocab_size = vocab_size
|
121 |
+
self.max_position_embeddings = max_position_embeddings
|
122 |
+
self.d_model = d_model
|
123 |
+
self.ffn_dim = ffn_dim
|
124 |
+
self.num_layers = num_layers
|
125 |
+
self.attention_heads = attention_heads
|
126 |
+
self.activation_function = activation_function
|
127 |
+
self.dropout = dropout
|
128 |
+
self.attention_dropout = attention_dropout
|
129 |
+
self.activation_dropout = activation_dropout
|
130 |
+
self.layerdrop = layerdrop
|
131 |
+
self.init_std = init_std
|
132 |
+
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
133 |
+
self.use_cache = use_cache
|
134 |
+
|
135 |
+
super().__init__(
|
136 |
+
pad_token_id=pad_token_id,
|
137 |
+
bos_token_id=bos_token_id,
|
138 |
+
eos_token_id=eos_token_id,
|
139 |
+
decoder_start_token_id=decoder_start_token_id,
|
140 |
+
**kwargs,
|
141 |
+
)
|